Issue |
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
|
|
---|---|---|
Article Number | 03032 | |
Number of page(s) | 9 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20214003032 | |
Published online | 09 August 2021 |
Implementation of Deep Learning Based Sentiment Classification and Product Aspect Analysis
1 M.E Student, Ramrao Adik Institute of Technology, D. Y. Patil Deemed to be University, Navi Mumbai, India.
2 Professor, Ramrao Adik Institute of Technology, D. Y. Patil Deemed to be University, Navi Mumbai, India.
* Corresponding author: author@e-mail.org
With the increase in E-Commerce businesses in the last decade,the sentiment analysis of product reviews has gained a lot of attention in linguistic research. In literature, the survey depicts the majority of the research done emphasizes on mere polarity identification of the reviews. The proposed system emphasized on classifying the sentiment polarity and the product aspect identification from the reviews. Proposed work experimented with traditional machine learning techniques as well as deep neural networks such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short Term Memory(LSTM) Networks. The proposed system gives a better understanding of these algorithms by comparing the outcomes. The Deep Learning approach in the proposed work successfully provides a mechanism which identifies the review polarity and intensity of the reviews and also analyses the short form words used by people in the reviews. The experimental results in this work, applied on amazon product dataset, shows that the LSTM model works the best for sentiment analysis and intensity of reviews with 93% accuracy. This research work also predicts polarity for short-form word reviews which is the common trend these days while writing the reviews.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.