Issue |
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
|
|
---|---|---|
Article Number | 02036 | |
Number of page(s) | 8 | |
Section | Algorithm Optimization and Application | |
DOI | https://doi.org/10.1051/itmconf/20224702036 | |
Published online | 23 June 2022 |
Personnel identification and distribution density analysis of subway station based on convolution neural network
1 Tsinghua University, School of Environment, Beijing, China
2 Research Institute of Chemical Defence, State Key Laboratory of NBC Protection for Civilian, Beijing, China
* Corresponding author: jiayu_tsinghua@163.com
In this paper, a method based on convolution neural network and multi-camera fusion is proposed to improve the recognition accuracy of crowd and then the personnel distribution of subway station platform is analyzed. In this method, tensorflow is used as the deep learning training framework and the yolov4 neural network algorithm is used to identify the subway station platform area using three videos synchronously. Through affine transformation and time average statistics, the passenger density of each sub-area is calculated and the distribution of personnel density in the whole area is analyzed. The results show that the number of people recognized by multiple cameras is 58% higher than that by single camera. The new recognition method has high recognition rate for the actual scene with large crowd and more obstacles. Finally some areas with high risk of personnel aggregation have been found, which should be the focus of safety monitoring.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.