Issue |
ITM Web Conf.
Volume 53, 2023
2nd International Conference on Data Science and Intelligent Applications (ICDSIA-2023)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 14 | |
Section | Artificial Intelligence | |
DOI | https://doi.org/10.1051/itmconf/20235301007 | |
Published online | 01 June 2023 |
An Object Detection Approach for Automated Detection of Groove Line in Tube Yoke
1 KLE Technological University, Hubli, Karnataka, India
2 Dana Anand India Private Limited, Dharwad, Karnataka, India
* Corresponding author: vishalfarande5@gmail.com
Deep Neural Networks are designed explicitly for visionbased applications. They have become a standard method for image classification, object detection, real-time processing capabilities, and other computer vision tasks. With the intervention of human beings, it is challenging for businesses to verify that the product is appropriately created without any glitches, as this could result in human errors due to a lack of training, which could further cause losses and several complications. Thus, there is a need for a machine learning-based solution that improves work efficiency and accuracy in identifying processed and unprocessed parts. Machine Learning models have several advantages over human intervention in tasks, including consistency, speed, scalability, costeffectiveness, and improvement over time. These advantages can help organizations improve their operations and achieve better outcomes. To do this, we propose an approach that involves building a model using an object detection method, You Only Look Once (YOLO), which is then deployed on a Raspberry Pi and integrated with the assembly line to carry out the task of validating the processed parts by achieving 98% accuracy.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.