Issue |
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 8 | |
Section | Deep Learning | |
DOI | https://doi.org/10.1051/itmconf/20235603003 | |
Published online | 09 August 2023 |
Human Activities Detection using DeepLearning Technique- YOLOv8
Using a mask during the pandemic has occasionally been crucial and difficult. The use of universal masks can greatly lower and possibly even stop the spread of viruses within communities. So, mask detection has become a very critical task for security agencies in all the buildings, Government offices & other places. With the advent of GPUs, high computing machines, and Deep Convolution Neural Networks (DCCN), automatic Face & Mask Detection is possible by considering the image processing feature of extracting, 3-dimensional shapes from 2- dimensional images. This paper discuss about the YOLOv8 model to confirm its overall applicability, on two datasets namely FDDB & MASK. This helps to examine the behavior of the feature from the Mask dataset, which is intended for COVID-19 Mask Detection alone. Mask is the main dataset in this experiment. Above this, the ImageNet dataset is utilized for pretraining and FDDB (Face Detection Dataset & Benchmarks) datasets for recognizing face of a human being. The precision of models on FDDB is 58.9 % & on MASK dataset is 66.5%.
Key words: Object Recognition / Human activity / Intersection over union / Deep Learning / YOLOv8 / IOU
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.