Open Access
Issue
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 03003
Number of page(s) 8
Section Deep Learning
DOI https://doi.org/10.1051/itmconf/20235603003
Published online 09 August 2023
  1. J. D. S. G. R. A. F. A. REDMoN, “You only look once: Unified, real- time object detection.,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016 [Google Scholar]
  2. M. A. W. J. EvEriNghAM, “The pascal visual object classes challenge 2011 (voc2011) development kit,” Pattern Analysis, Statistical Modelling and Computational Learning, Tech, 2016. [Google Scholar]
  3. A. L. P. S. C. A. U. R. GEigEr, “Vision meets robotics: The kitti dataset,” The International Journal of Robotics Research, 2013. [Google Scholar]
  4. J. B. A. S. S. S. H. K. A. A. F.-F. L. DENg, “Imagenet large scale visual recognition competition 2012 (ilsvrc2012),” 2012. [Google Scholar]
  5. V. A. L.-M. E. G. F. JAiN, “A benchmark for face detection in unconstrained settings,” UMass Amherst Technical Report, 2010. [Google Scholar]
  6. A. S. I. A. H. G. E. KrizhEVsKy, “Imagenet classification with deep convolutional neural networks,” in In Advances in neural information, 2012, pp. 1097–1105. [Google Scholar]
  7. K. A. Z. A. SiMoNyAN, Very deep convolutional networks for large- scale image recognition., arXiv preprint arXiv:1409.1556, 2014. [Google Scholar]
  8. R. D. J. D. T. A. M. J. GirshicK, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014 [Google Scholar]
  9. P. A. J. M. VioLA, “Rapid object detection using a boosted cascade of simple features.,” in Computer Vision and Pattern Recognition, Proceedings of the 2001 IEEE Computer Society Conference, 2001. [Google Scholar]
  10. C. L. W. J. Y. S. P. R. S. A. D. E. D. V. V. A. R. A. SzEgEDy, “Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015. [Google Scholar]
  11. M. A. A. F. D. SADEghi, “30hz object detection with dpm v5.,” in European Conference on Computer Vision, 2014. [Google Scholar]
  12. P. A. J. M. VioLA, “Rapid object detection using a boosted cascade of simple features.,” in Computer Vision and Pattern Recognition, Proceedings of the 2001 IEEE Computer Society Conference, 2001. [Google Scholar]
  13. S. Xu, X. Wang, W. Lv, Q. Chang, C. Cui, K. Deng, G. Wang, Q. Dang, S. Wei, Y. Du, et al., “Pp-yoloe: An evolved version of yolo,” arXiv preprint arXiv:2203.16250, 2022. [Google Scholar]
  14. X. Huang, X. Wang, W. Lv, X. Bai, X. Long, K. Deng, Q. Dang, S. Han, Q. Liu, X. Hu, et al., “Pp-yolov2: A practical object detector,” arXiv preprint arXiv:2104.10419, 2021. [Google Scholar]
  15. R. Liu, J. Lehman, P. Molino, F. Petroski Such, E. Frank, A. Sergeev, and J. Yosinski, “An intriguing failing of convolutional neural networks and the coordconv solution,” Advances in neural information processing systems, vol. 31, 2018. [Google Scholar]
  16. G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics.” https://github.com/ultralytics/ultralytics, 2023. Accessed: February 30, 2023. [Google Scholar]
  17. Alibaba, “TinyNAS.” https://github.com/alibaba/lightweight-neural-architecture-search, 2023. Accessed: March 18, 2023. [Google Scholar]
  18. C.-Y. Wang, H.-Y. M. Liao, and I.-H. Yeh, “Designing network design strategies through gradient path analysis,” arXiv preprint arXiv:2211.04800, 2022. [Google Scholar]
  19. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Generalized intersection over union: A metric and a loss for bounding box regression,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 658-666, 2019. [Google Scholar]
  20. Z. Gevorgyan, “Siou loss: More powerful learning for bounding box regression,” arXiv preprint arXiv:2205.12740, 2022. [Google Scholar]
  21. C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, “Tood: Task-aligned one-stage object detection,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3490-3499, IEEE Computer Society, 2021. [CrossRef] [Google Scholar]
  22. Y. Wu, Y. Chen, L. Yuan, Z. Liu, L. Wang, H. Li, and Y. Fu, “Rethinking classification and localization for object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10186-10195, 2020. [Google Scholar]
  23. S. Wang, J. Zhao, N. Ta, X. Zhao, M. Xiao, and H. Wei, “A real-time deep learning forest fire monitoring algorithm based on an improved pruned+ kd model,” Journal of Real- Time Image Processing, vol. 18, no. 6, pp. 2319–2329, 2021. [CrossRef] [Google Scholar]
  24. Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-iou loss: Faster and better learning for bounding box regression,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 12993–13000, 2020. [CrossRef] [Google Scholar]
  25. C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, “Cspnet: A new backbone that can enhance learning capability of cnn,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390-391, 2020. [Google Scholar]
  26. N. P. S. S. Motwani, and U. Singh, “Object Detection and Tracking for Autonomous Vehicles using Deep Learning Technique- YOLO,” 2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Bangalore, India, 2022, pp. 1-6, DOI: 10.1109/SMARTGENCON56628.2022.10083703. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.