Issue |
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
|
|
---|---|---|
Article Number | 05006 | |
Number of page(s) | 10 | |
Section | Machine Learning & Neural Networks | |
DOI | https://doi.org/10.1051/itmconf/20235605006 | |
Published online | 09 August 2023 |
Performance Analysis of Human Activity
Department of Electronics and Communication Engineering, National Institute of Technology Delhi, Delhi – 110 036, India
E-mail: 191220041@nitdelhi.ac.in
E-mail: dvaithiyanathan@nitdelhi.ac.in
E-mail: preetiverma@nitdelhi.ac.in
E-mail: baljitkaur@nitdelhi.ac.in
This project aims to develop an AI-powered gym assistant using Jupyter Notebook and MediaPipe, a popular computer vision library, to count the repetitions of three joint exercises: curls, squats, and sit-ups. The system will provide real-time feedback and monitoring, allowing users to track their progress and improve performance. The proposed method utilizes MediaPipe, which offers pre-trained machine-learning models for human pose estimation and hand tracking. These models will accurately detect and track critical body joints and hand movements during the exercises. The system will then analyze the detected poses to identify the repetitions of each activity based on predefined movement patterns and pose thresholds. Jupyter Notebook will be used as the development environment for coding and testing the system. Python programming language and MediaPipe’s Python API will be employed to implement the pose estimation and repetition counting algorithms. The system will also incorporate a user-friendly interface, allowing users to interact with the gym assistant and receive feedback on their exercise performance. The completed project will provide an AI-powered gym assistant that can accurately count the repetitions of curls, squats, and sit-ups in real-time. Additionally, this project will contribute to the advancement of the field of fitness technology by showcasing the potential of combining computer vision and artificial intelligence techniques for gym monitoring and performance tracking. The results of this project have the potential to benefit fitness enthusiasts, trainers, and researchers alike, providing contributions to the field of fitness technology.
Key words: Exercise monitoring / Healthcare / multimedia processing / Blazepose / Deep learning
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.