Issue |
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 21 | |
Section | Software Engineering & Information Technology | |
DOI | https://doi.org/10.1051/itmconf/20235701009 | |
Published online | 10 November 2023 |
Weighted Multiclass Intrusion Detection System
Department of Multidisciplinary, Engineering Vishwakarma Institute of Technology Pune, INDIA
* Soham Phadke: chintamani.soham21@vit.edu
Attackers are continuously coming up with new attack strategies since cyber security is a field that is continually changing. As a result, it’s important to update and enhance the system frequently to ensure its efficiency against fresh threats. Unauthorised entry, usage, or manipulation of a computer system or network by a person or programme is referred to as an intrusion. There are numerous ways for an incursion to happen, including using software flaws, phishing scams, or social engineering techniques. A realistic solution to handle the risks brought on by the interconnectedness and interoperability of computer systems is to use deep learning architectures to build an adaptive and resilient network intrusion detection system (IDS) to identify and categorise network attacks. Artificial neural networks (ANNs) or deep learning can help adaptive intrusion detection systems (IDS) with learning capabilities identify well-known and unique or zero-day network behavioural patterns, which can significantly reduce the risk of compromise. The NSL-KDD dataset, which represents both synthetically manufactured attack actions and real-world network communication activity, is used to show the effectiveness of the model. Model trained with this dataset to detect a wide range of attack patterns, which help in building an effective IDS.
Key words: Deep Learning / Decision Tree / KNN / Naive Bayes / Random Forest.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.