Open Access
Issue
ITM Web Conf.
Volume 57, 2023
Fifth International Conference on Advances in Electrical and Computer Technologies 2023 (ICAECT 2023)
Article Number 01009
Number of page(s) 21
Section Software Engineering & Information Technology
DOI https://doi.org/10.1051/itmconf/20235701009
Published online 10 November 2023
  1. G. Zhu, H. Yuan, Y. Zhuang, Y. Guo, X. Zhang and S. Qiu, “Research on network intrusion detection method of power system based on random forest algorithm, ” 2021 13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Beihai, China, 2021, pp. 374-379, doi: 10.1109/ICMTMA52658.2021.00087. [Google Scholar]
  2. Lin, E., Chen, Q. & Qi, X. Deep reinforcement learning for imbalanced classification. Appl Intell 50, 2488–2502 (2020). https://doi.org/10.1007/s10489-020-01637-z [CrossRef] [Google Scholar]
  3. B.R, S. Deepajyothi, P.G, D. T, P. Karthikeyan and V. S, “Survey on Intrusions Detection System using Deep learning in IoT Environment, ” 2022 International Conference on Sustainable 20 Computing and Data Communication Systems (ICSCDS), Erode, India, 2022, pp. 195-199, doi: 10.1109/ICSCDS53736.2022.9760993. [Google Scholar]
  4. Lirim Ashiku, Cihan Dagli, Network Intrusion Detection System using Deep Learning, Procedia Computer Science, Volume 185, 2021, Pages 239-247, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.05.025. (https://www.sciencedirect.com/science/article/pii/S1877050921011078) [CrossRef] [Google Scholar]
  5. Fernandez, Gabriel & Xu, Shouhuai. (2019). A Case Study on Using Deep Learning for Network Intrusion Detection. [Google Scholar]
  6. S. Al-Emadi, A. Al-Mohannadi and F. Al-Senaid, “Using Deep Learning Techniques for Network Intrusion Detection, ” 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2020, pp. 171-176, doi: 10.1109/ICIoT48696.2020.9089524. [Google Scholar]
  7. T. Su, H. Sun, J. Zhu, S. Wang and Y. Li, “BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset, ” in IEEE Access, vol. 8, pp. 29575-29585, 2020, doi: 10.1109/ACCESS.2020.2972627. [CrossRef] [Google Scholar]
  8. Akshay Kumaar M, Samiya D, Vincent PMDR, Srinivasan K, Chang CY, Ganesh H. A Hybrid Framework for Intrusion Detection in Healthcare Systems Using Deep Learning. Front Public Health. 2022 Jan 12;9:824-898. doi: 10.3389/fpubh.2021.824898. PMID: 35096763; PMCID: PMC8790147. [CrossRef] [Google Scholar]
  9. Lirim Ashiku, Cihan Dagli, Network Intrusion Detection System using Deep Learning, Procedia Computer Science, Volume 185, 2021, Pages 239-247, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.05.025. (https://www.sciencedirect.com/science/article/pii/S1877050921011078) [CrossRef] [Google Scholar]
  10. A. S. Ahanger, S. M. Khan and F. Masoodi, “An Effective Intrusion Detection System using Supervised Machine Learning Techniques, ” 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2021, pp. 1639-1644, doi: 10.1109/ICCMC51019.2021.9418291. [Google Scholar]
  11. S. Osken, E. N. Yildirim, G. Karatas and L. Cuhaci, “Intrusion Detection Systems with Deep Learning: A Systematic Mapping Study, ” 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 2019, pp. 1-4, doi: 10.1109/EBBT.2019.8742081. [Google Scholar]
  12. Lirim Ashiku, Cihan Dagli, Network Intrusion Detection System using Deep Learning, Procedia Computer Science, Volume 185, 2021, Pages 239-247, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.05.025. [CrossRef] [Google Scholar]
  13. N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, “A Deep Learning Approach to Network Intrusion Detection, ” in IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 41-50, Feb. 2018, doi: 10.1109/TETCI.2017.2772792. [CrossRef] [Google Scholar]
  14. Sydney Mambwe Kasongo, Yanxia Sun, A deep learning method with wrapper based feature extraction for wireless intrusion detection system, Computers & Security, Volume 92, 2020, 101752, ISSN 0167-4048, https://doi.org/10.1016/j.cose.2020.101752. [CrossRef] [Google Scholar]
  15. M. Al-Qatf, Y. Lasheng, M. Al-Habib and K. Al-Sabahi, “Deep Learning Approach Combining Sparse Autoencoder With SVM for Network Intrusion Detection, ” in IEEE Access, vol. 6, pp. 52843-52856, 2018, doi: 10.1109/ACCESS.2018.2869577. [CrossRef] [Google Scholar]
  16. Sarika Choudhary, Nishtha Kesswani, Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 Datasets using Deep Learning in IoT, Procedia Computer Science, Volume 167, 2020 [Google Scholar]
  17. C. Xu, J. Shen, X. Du and F. Zhang, “An Intrusion Detection System Using a Deep Neural Network With Gated Recurrent Units, ” in IEEE Access, vol. 6, pp. 48697-48707, 2018, doi: 10.1109/ACCESS.2018.2867564. [CrossRef] [Google Scholar]
  18. Y. Xiao, C. Xing, T. Zhang and Z. Zhao, “An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks, ” in IEEE Access, vol. 7, pp. 42210-42219, 2019, doi: 10.1109/ACCESS.2019.2904620. [CrossRef] [Google Scholar]
  19. K. Goeschel, “Reducing false positives in intrusion detection systems using data-mining techniques utilising support vector machines, decision trees, and naive Bayes for off-line analysis, ” SoutheastCon 2016, Norfolk, VA, USA, 2016, pp. 1-6, doi: 10.1109/SECON.2016.7506774. [Google Scholar]
  20. S. M. Kasongo and Y. Sun, “A Deep Learning Method With Filter Based Feature Engineering for Wireless Intrusion Detection System, ” in IEEE Access, vol. 7, pp. 38597-38607, 2019, doi: 10.1109/ACCESS.2019.2905633. [CrossRef] [Google Scholar]
  21. Mohamed Amine Ferrag, Leandros Maglaras, Sotiris Moschoyiannis, Helge Janicke, Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study, Journal of Information Security and Applications, Volume 50, 2020, 102419, ISSN 2214-2126, https://doi.org/10.1016/j.jisa.2019.102419. [CrossRef] [Google Scholar]
  22. N. Khoza, M. Khosa, T. Mahlangu and N. Ndlovu, “Plant Seedling Classification Using Machine Learning, ” 2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), Durban, South Africa, 2022, pp. 1-6, doi: 10.1109/icABCD54961.2022.9856067. [Google Scholar]
  23. Bayu Adhi Tama, Sunghoon Lim, Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation, Computer Science Review, Volume 39, 2021, 100357, ISSN 1574-0137, https://doi.org/10.1016/j.cosrev.2020.100357. [CrossRef] [Google Scholar]
  24. Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R. et al. Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput 24, 1999–2012 (2020). https://doi.org/10.1007/s00500-019-04030-2 [CrossRef] [Google Scholar]
  25. Jeyanthi D, Indrani B. IoT Based Intrusion Detection System for Healthcare Using RNNBiLSTM Deep Learning Strategy with Custom Features. Research Square; 2022. DOI: 10.21203/rs.3.rs-2302072/v1. [Google Scholar]
  26. Jour, Uddin, M. Irfan, Alkahtani, Hasan, Aldhyani, Theyazn H. H. 2021 2021/07/07 Intrusion Detection System to Advance Internet of Things Infrastructure-Based Deep Learning Algorithms 5579851 2021 1076-2787 https://doi.org/10.1155/2021/5579851 [Google Scholar]
  27. N. Ahuja, G. Singal and D. Mukhopadhyay, “DLSDN: Deep Learning for DDOS attack detection in Software Defined Networking, ” 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 2021, pp. 683-688, doi: 10.1109/Confluence51648.2021.9376879. [Google Scholar]
  28. Alzahrani, Mohammed Yahya, Alkahtani, Hasan, Aldhyani, Theyazn H. H., Al-Yaari, Mohammed 2020 2020/12/10 Adaptive Anomaly Detection Framework Model Objects in Cyberspace 6660489 2020 1176-2322 https://doi.org/10.1155/2020/6660489 10.1155/2020/6660489 [Google Scholar]
  29. Nskh, Praneeth & Varma, M & Naik, Roshan. (2016). Principle component analysis based intrusion detection system using support vector machine. 1344-1350. 10.1109/RTEICT.2016.7808050. [Google Scholar]
  30. U. Bashir and M. Chachu, “Intrusion detection and prevention system: Challenges & opportunities, ” 2014 International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2014, pp. 806-809, doi: 10.1109/IndiaCom.2014.6828073. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.