Issue |
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/itmconf/20246301006 | |
Published online | 13 February 2024 |
COVID-19 Detection using Deep Learning Classifiers with Histogram Equalization and Contour-Based X-Ray Images
1
Data Technology and Applications Research Group, Creative Advanced Machine Intelligence Research Centre, Faculty of Computing and Informatics, Universiti Malaysia Sabah, 88400 Sabah, Malaysia
2
Faculty of Computing and Informatics, Universiti Malaysia Sabah, 88400 Sabah, Malaysia
3
Faculty of Business, Higher Colleges of Technology, United Arab Emirates
* Corresponding author: hanafi@ums.edu.my
The global health crisis caused by COVID-19 has significantly impacted both lifestyle and healthcare. Accurate and prompt medical diagnosis is crucial in combating the spread of the disease. However, the time required for laboratory interpretation and the high cost of a Computed Tomography (CT) scan can lead to inaccurate predictions of this disease. Several existing works have addressed this issue by using the Chest X-ray (CXR) images, however, achieving high accuracy is still a challenge in this domain. In this paper, features extracted from various modified CXR images that could produce more informative features, coupled with deep learning architectures, were evaluated to address the accuracy issue. First, the original CXR images were preprocessed and generated two subsequent different sets: the enhanced CXR images using histogram equalisation and the CXR contour images using contour-based methods. VGG16, InceptionV3, and Xception were used as feature extractors and classifiers; trained on public datasets to classify the CXR images into three categories: health, pneumonia, and COVID-19. The results demonstrate that the proposed work is able to accurately differentiate CXR images based on their respective classes. The best individual model was trained using InceptionV3 with histogram equalisation, achieving an accuracy of 98.25%.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.