Open Access
Issue
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
Article Number 01006
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20246301006
Published online 13 February 2024
  1. W. H. Organization, “Coronavirus.” [Online]. Available: https://www.who.int/health-topics/coronavirus/coronavirus. [Accessed: 22–Oct-2023]. [Google Scholar]
  2. T. P. Velavan and C. G. Meyer, “The COVID-19 epidemic,” Trop. Med. Int. Heal., vol. 25, no. 3, pp. 278–280, 2020, doi: 10.1111/tmi.13383. [CrossRef] [Google Scholar]
  3. S. T. H. Kieu, A. Bade, M. H. A. Hijazi, and H. Kolivand, “COVID-19 Detection using Integration of Deep Learning Classifiers and Contrast-Enhanced Canny Edge Detected X-Ray Images,” IT Prof., vol. 23, no. 4, pp. 51–56, Jul. 2021, doi: 10.1109/MITP.2021.3052205. [CrossRef] [Google Scholar]
  4. A. Tahsin Meem, M. Monirujjaman Khan, M. Masud, and S. Aljahdali, “Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN,” Comput. Syst. Sci. Eng., vol. 41, no. 3, pp. 1223–1240, 2022, doi: 10.32604/csse.2022.021563. [CrossRef] [Google Scholar]
  5. S. Asif, M. Zhao, F. Tang, and Y. Zhu, “A deep learning-based framework for detecting COVID-19 patients using chest X-rays,” Multimed. Syst., vol. 28, no. 4, pp. 1495–1513, Aug. 2022, doi: 10.1007/s00530-022-00917-7. [CrossRef] [Google Scholar]
  6. M. M. Sufian, E. V. Moung, M. H. A. Hijazi, F. Yahya, J. A. Dargham, A. Farzamnia, F. Sia, and N. F. M. Naim, “COVID-19 Classification through Deep Learning Models with Three-Channel Grayscale CT Images,” Big Data Cogn. Comput., vol. 7, no. 1, p. 36, Feb. 2023, doi: 10.3390/bdcc7010036. [CrossRef] [Google Scholar]
  7. H. Ko, H. Chung, W. S. Kang, K. W. Kim, Y. Shin, S. J. Kang, J. H. Lee, Y. J. Kim, N. Y. Kim, H. Jung, and J. Lee, “COVID-19 Pneumonia Diagnosis Using a Simple 2D Deep Learning Framework With a Single Chest CT Image: Model Development and Validation,” J. Med. Internet Res., vol. 22, no. 6, p. e19569, Jun. 2020, doi: 10.2196/19569. [CrossRef] [Google Scholar]
  8. K. Y. Win, N. Maneerat, S. Sreng, and K. Hamamoto, “Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset,” Appl. Sci., vol. 11, no. 22, p. 10528, Nov. 2021, doi: 10.3390/app112210528. [CrossRef] [Google Scholar]
  9. S. T. H. Kieu, A. Bade, M. H. A. Hijazi, and H. Kolivand, “A Survey of Deep Learning for Lung Disease Detection on Medical Images: State-of-the-Art, Taxonomy, Issues and Future Directions,” J. Imaging, vol. 6, no. 12, p. 131, Dec. 2020, doi: 10.3390/jimaging6120131. [CrossRef] [Google Scholar]
  10. M. Mossa-Basha, C. C. Meltzer, D. C. Kim, M. J. Tuite, K. P. Kolli, and B. S. Tan, “Radiology Department Preparedness for COVID-19: Radiology Scientific Expert Review Panel,” Radiology, vol. 296, no. 2, pp. E106-E1122, Aug. 2020, doi: 10.1148/radiol.2020200988. [CrossRef] [Google Scholar]
  11. G. Frija, I. Blazic, D. P. Frush, M. Hierath, M. Kawooya, L. Donoso-Bach, and B. Brkljacic, “How to improve access to medical imaging in low- and middle-income countries ?,” eClinicalMedicine, vol. 38, p. 101034, Aug. 2021, doi: 10.1016/j.eclinm.2021.101034. [CrossRef] [Google Scholar]
  12. T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz, S. A. Kashem, M. T. Islam, S. A. Maadeed, S. M. Zughaier, M. S. Khan, and M. E. H. Chowdhury, “Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images,” Comput. Biol. Med., vol. 132, p. 104319, May 2021, doi: 10.1016/j.compbiomed.2021.104319. [CrossRef] [Google Scholar]
  13. W. Chen, M. Yao, Z. Zhu, Y. Sun, and X. Han, “The application research of AI image recognition and processing technology in the early diagnosis of the COVID-19,” BMC Med. Imaging, vol. 22, no. 1, p. 29, Dec. 2022, doi: 10.1186/s12880-022-00753-1. [CrossRef] [Google Scholar]
  14. R. J. Hemalatha, V. Vijaybaskar, and T. R. Thamizhvani, “Performance Evaluation of Contour Based Segmentation Methods for Ultrasound Images,” Adv. Multimed., vol. 2018, pp. 1–8, Sep. 2018, doi: 10.1155/2018/4976372. [CrossRef] [Google Scholar]
  15. W. Chen, M. Yao, Z. Zhu, Y. Sun, and X. Han, “The application research of AI image recognition and processing technology in the early diagnosis of the COVID-19,” BMC Medical Imaging, vol. 22, no. 1, 2022, doi: 10.1186/s12880-022-00753-1. [Google Scholar]
  16. R. J. Hemalatha, V. Vijaybaskar, and T. R. Thamizhvani, “Performance Evaluation of Contour Based Segmentation Methods for Ultrasound Images,” Advances in Multimedia, vol. 2018, pp. 1–8, 2018, doi: 10.1155/2018/4976372. [CrossRef] [Google Scholar]
  17. C.-M. Stancioi, I. Clitan, A. Mihai, and V. Muresan, “Implementing a Pulmonary Fibrosis Diagnostic System Using the Matlab Environment,” 2021 23rd International Conference on Control Systems and Computer Science (CSCS), 2021, doi: 10.1109/cscs52396.2021.00015. [Google Scholar]
  18. I. D. Apostolopoulos and T. A. Mpesiana, “Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks,” Physical and Engineering Sciences in Medicine, vol. 43, no. 2, pp. 635–640, 2020, doi: 10.1007/s13246-020-00865-4. [CrossRef] [Google Scholar]
  19. Cohen, Morrison, Dao, Roth, Duong, and Ghassemi, “COVID-19 Image Data Collection: Prospective Predictions Are the Future,” Github, 2020. https://github.com/ieee8023/covid-chestxray-dataset [Google Scholar]
  20. “COVID-19 X rays,” Kaggle, [Online]. Available: https://www.kaggle.com/andrewmvd/convid19-X-rays. [Accessed: 18-Mar-2020]. [Google Scholar]
  21. D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A. Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, and K. Zhang, “Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning,” Cell, vol. 172, no. 5, pp. 1122–1131.e9, 2018, doi: 10.1016/j.cell.2018.02.010. [CrossRef] [PubMed] [Google Scholar]
  22. Md. R. Islam and Md. Nahiduzzaman, “Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach,” Expert Systems With Applications, vol. 195, p. 116554, 2022, doi: 10.1016/j.eswa.2022.116554. [CrossRef] [Google Scholar]
  23. K. Y. Win, N. Maneerat, S. Sreng, and K. Hamamoto, “Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset,” Applied Sciences, vol. 11, no. 22, p. 10528, Nov. 2021, doi: 10.3390/app112210528. [CrossRef] [Google Scholar]
  24. N. S. Shaik and T. K. Cherukuri, “Transfer learning based novel ensemble classifier for COVID-19 detection from chest CT-scans,” Computers in Biology and Medicine, vol. 141, p. 105127, 2022, doi: 10.1016/j.compbiomed.2021.105127 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.