Issue |
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/itmconf/20246301012 | |
Published online | 13 February 2024 |
A Comparative Evaluation on Data Transformation Approach for Artificial Speech Detection
Faculty of Computing and Informatics, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
* Corresponding author: hanafi@ums.edu.my
The rise of voice biometrics has transformed user authentication and offered enhanced security and convenience while phasing out less secure methods. Despite these advancements, Automatic Speaker Verification (ASV) systems remain vulnerable to spoofing, particularly with artificial speech generated swiftly using advanced speech synthesis and voice conversion algorithms. A recent data transformation technique achieved an impressive Equal Error Rate (EER) of 1.42% on the ASVspoof 2019 Logical Access Dataset. While this approach predominantly relies on Support Vector Machine (SVM) as the backend classifier for artificial speech detection, it is vital to explore a broader range of classifiers to enhance resilience. This paper addresses this research gap by systematically assessing classifier efficacy in artificial speech detection. The objectives are twofold: first, to evaluate various classifiers, not limited to SVM, and identify those best suited for artificial speech detection; second, to compare this approach's performance with existing methods. The evaluation demonstrated SVM-Polynomial as the top-performing classifier, surpassing the end-to-end learning approach. This work contributes to a deeper understanding of classifier efficacy and equips researchers and practitioners with a diversified toolkit for building robust ASV spoofing detection systems.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.