Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 6 | |
Section | Image Processing and Computer Vision | |
DOI | https://doi.org/10.1051/itmconf/20257003026 | |
Published online | 23 January 2025 |
Image Inpainting of Portraits Artwork Design and Implementation
Computer Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China
Corresponding author: 202003340227@zjut.edu.cn
In modern society, the restoration of artwork has become increasingly important. Generative models can provide reference images for the damaged or blurred core areas of these artworks. This paper simulates artificial damage to classic portrait paintings in the Art Portraits dataset by adding center masks during data preprocessing and then implements the image inpainting task. During the training phase, the Denoising Diffusion Probabilistic Model (DDPM) is fine-tuned by progressively adding noise to the center-masked images in the noising stage, followed by denoising in the denoising stage to generate images. The generated images are compared with the original undamaged images through loss calculations to optimize the model. Additionally, a Generative Adversarial Network (GAN), which has shown promising results on other datasets, is used as a baseline for comparison. The damaged images are used as inputs, and the generated images are compared to the ground truth to evaluate the performance of both models. In the testing phase, two widely used metrics in image evaluation, Mean Squared Error (MSE) and Fréchet Inception Distance (FID), are introduced to assess the performance. The fine-tuned DDPM achieves an MSE of 0.2622 and an FID of 16.85, while the GAN scores 0.2835 and 22.78, respectively. Since lower values indicate higher fidelity in reproducing the original image, which is crucial for art restoration, the conclusion drawn from this paper is that the fine-tuned DDPM demonstrates higher accuracy and is more suitable for restoration projects related to Art Portraits.
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.