Open Access
Issue |
ITM Web Conf.
Volume 70, 2025
2024 2nd International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI 2024)
|
|
---|---|---|
Article Number | 03026 | |
Number of page(s) | 6 | |
Section | Image Processing and Computer Vision | |
DOI | https://doi.org/10.1051/itmconf/20257003026 | |
Published online | 23 January 2025 |
- R. L. Ruthotto, E. H., An introduction to deep generative modeling, arXiv:2103.05180, (2021). [Google Scholar]
- Chen, J.Q.W., Liu, Y., Yan, D. M., Wonka, P., Deep learning-based image and video inpainting: a survey, arXiv:2401.03395 (2024). [Google Scholar]
- L. C. Ledig, Photo-realistic single image super-resolution using a generative adversarial network, arXiv:1609.04802. (2017). [Google Scholar]
- G. I. J. Goodfellow, Generative adversarial networks, arXiv:1406.2661 (2014). [Google Scholar]
- Zhang, L. Y. Y., Fan, H., Luo, T., High-fidelity image inpainting with GAN inversion, arXiv:2208.11850 (2022). [Google Scholar]
- E. A. Elgammal, Liu, B., Elhoseiny, M., Mazzone, M., CAN: Creative adversarial networks, generating ‘art’ by learning about styles and deviating from style norms, arXiv:1706.07068. (2017). [Google Scholar]
- Jiang, X. J., Yang, B., Xu, J., Zhu, J., Image inpainting based on generative adversarial networks, IEEE Access, 1-1, (2020). [Google Scholar]
- H. J. Ho, Jain, A., Abbeel, P., Denoising diffusion probabilistic models, arXiv:2006.11239. (2020). [Google Scholar]
- L. A. Lugmayr, Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L., RePaint: Inpainting using denoising diffusion probabilistic models, arXiv:2201.09865. (2022). [Google Scholar]
- W. L. Wu, Editing text in the wild, arXiv:1908.03047. (2019). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.