Open Access
Issue
ITM Web of Conferences
Volume 2, 2014
First Symposium on OpenFOAM® in Wind Energy
Article Number 06002
Number of page(s) 14
Section Wind Turbine Modelling and Wind Farm Optimization
DOI https://doi.org/10.1051/itmconf/20140206002
Published online 18 February 2014
  1. Barthelmie RJ, Frandsen ST, Rathmann O, Hansen K, Politis ES, Prospathopoulos J, Cabezón D, Rados K, van der Pijl SP, Schepers JG, Schlez W, Phillips J, Neubert A. Flow and wakes in large wind farms in complex terrain and offshore. In European Wind Energy Conference and Exhibition, Brussels (2008) [Google Scholar]
  2. Barthelmie, R.J., Frandsen, S.T., Hansen, K., Politis, E., Cabezón, D., Schepers, J.G., Rados, K. and Schlez, W. Power losses due to wind turbine wakes in large wind farms offshore and in complex terrain. World Renewable Energy Congress, Abu Dhabi, September (2010) [Google Scholar]
  3. A. Crespo, J. Hernández, and S. Frandsen, “Survey of modelling methods for wind turbine wakes and wind farms,” Wind Energy Journal, vol. 2, 1–24 (1999) [CrossRef] [Google Scholar]
  4. L. Vermeer, J. Sorensen, and A. Crespo, “Wind turbine wake aerodynamics,” Prog. Aerosp. Sci. 39, 467–510 (2003) [CrossRef] [Google Scholar]
  5. B. Sanderse, S. P. van der Pijl and B. Koren, “Review of computational fluid dynamics for wind turbine wake aerodynamics” Wind Energy J., 14:799–819 (2011) [CrossRef] [Google Scholar]
  6. Réthoré P., Sørensen N., Zahle F., Bechmann A., ”Study of the wake turbulence of a CFD actuator disk model compared with a full rotor CFD model”, Proceedings of the European Wind Energy Conference 2009, Marseille (France) [Google Scholar]
  7. Cabezón D., Migoya E., Crespo A., “Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer”, Journal of Wind Energy, DOI: 10.1002/we.516 [Google Scholar]
  8. Cabezón D., Sanz J., Martí I., Crespo A., ”CFD modelling of the interaction between the Surface Boundary Layer and rotor wake. Comparison of results obtained with different turbulence models and mesh strategies”. European Wind Energy Conference and Exhibition, Marseille, March (2009) [Google Scholar]
  9. Crespo A, Chacón L, Hernández J, Manuel F, Grau JC. UPMPARK: a parabolic 3D code to model wind farms, Proceedings of EWEC '94, Thessaloniki, Greece, 1994; 454–9 [Google Scholar]
  10. Crespo A, Hernández J. Numerical modeling of the flow field in a wind turbine wake. In: Proceedings of the 3rd Joint ASCE/ASME Mechanics Conference, Forum on Turbulent Flows. ASME, FED-vol. 76, La Jolla, CA, USA, 1989. p. 121–7 [Google Scholar]
  11. Richards P.J., Hoxey R.P., 1993, “Appropiate boundary conditions for computational wind engineering models using the K-EPS turbulence model”, J. Wind Engineering and Industrial Aerodynamics, pp. 46–47 [Google Scholar]
  12. Panofsky H., Dutton J., “Atmospheric Turbulence”, Wiley, New York (1984) [Google Scholar]
  13. Launder B.E. and Spalding D.B., ”Lectures in Mathematical Models of Turbulence”, Academic Press, London, England (1972) [Google Scholar]
  14. Gibson M.M. and Launder B. E. “Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer” J. Fluid Mech., 86:491–511 (1978) [CrossRef] [Google Scholar]
  15. Blocken, B., Stathopoulos, T., Carmeliet, J., “CFD simulation of the atmospheric boundary layer – wall function problems”, J. Atmospheric Environment (2006) [Google Scholar]
  16. Cleijne J.W., “Results of Sexbierum Wind Farm”, Report MT-TNO Apeldoorn 92–388 (1992) [Google Scholar]
  17. Prospathopoulos, J., Cabezón, D., Politis, E.P., Chaviaropoulos, P.K., Rados, K.G., Schepers, G.S., Hansen, K.S. and Barthelmie, R.J.: Simulation of wind farms in flat and complex terrain using CFD, The Science of Making Torque from Wind, Crete, June (2010), 12 pp [Google Scholar]
  18. Politis, E., Prospathopoulos, J., Cabezón D., Hansen, K.S., Chaviaropoulos P.K., Barthelmie, R.J., 2011, “Modelling wake effects in large wind farms in complex terrain: the problem, the methods and the issues”, Journal of Wind Energy, DOI 10.1002/we.481 [Google Scholar]
  19. Machielse, L.A.H., Eecen, P.J., Korterink, H., van der Pijl, S.P. and Schepers, J.G., “ECN Test Farm Measurements For Validation of Wake Models”, Proceedings of the 2007 European Wind Energy Conference & Exhibition, Milan 7-10/5/2007, Edited by P. K. Chaviaropoulos, pp. 98–102 [Google Scholar]
  20. Cabezón D., Sumner J., Crespo A., “Prediction of wake effects on wind farm power production using a RANS approach. Part II: Offshore. Case studies from the UPWIND project”, Wake Conference, Gotland (Sweeden), 2011 [Google Scholar]
  21. Smith D., Taylor GJ. “Further analysis of turbine wake development and interaction data”. In: Q.D.C., F.V.C., editors. Proceedings of the 13th BWEA Wind Energy Conference, Swansea, UK, 1991, p. 325–31 [Google Scholar]
  22. Gómez-Elvira R., et al., “Anisotropiy of turbulence in wind turbine wakes”, J. Wind Engineering and Industrial Aerodynamics, Vol. 93, pp 797–814, 2003 [CrossRef] [Google Scholar]
  23. Burton T., Sharpe D., et al., “Wind Energy Handbook”, John Wiley & Sons LTD, England, 2001 [CrossRef] [Google Scholar]
  24. Cabezón D, Hansen K, Barthelmie RJ. Analysis and validation of CFD wind farm models in complex terrain Wakes induced by topography and wind turbines. In European Wind Energy Conference and Exhibition, Warsaw (2010) [Google Scholar]
  25. Prospathopoulos, J., Cabezón D., Politis E., Chaviaropoulos P.K., Rados K., Schepers J.G., Hansen K.S., Barthelmie R.J., “Simulation of wind farms in flat and complex terrain using CFD”, Conference on the science of making torque from wind, Heraklion, Crete (Greece), June 2010 [Google Scholar]
  26. OpenCFD, “OpenFOAM: The Open Source CFD Toolbox – Programmer's Guide v1.7” (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.