Open Access
ITM Web of Conferences
Volume 5, 2015
Workshop on Multiscale and Hybrid Modelling in Cell and Cell Population Biology
Article Number 00010
Number of page(s) 3
Published online 11 December 2015
  1. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472: 90–4 [CrossRef] [PubMed] [Google Scholar]
  2. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, Sim S, Okamoto J, Johnston DM, Qian D, Zabala M, Bueno J, Neff NF, Wang J, Shelton AA, Visser B, Hisamori S, Shimono Y, van de Wetering M, Clevers H, Clarke MF, Quake SR. 2011. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotech 29: 1120–7 [CrossRef] [Google Scholar]
  3. Maecker HT, McCoy JP, Nussenblatt R. 2012. Standardizing immunophenotyping for the Human Immunology Project. Nat Rev Immunol 12: 191–200 [Google Scholar]
  4. Aghaeepour N, Finak G, Flow CAPC, Consortium D, Hoos H, Mosmann TR, Brinkman R, Gottardo R, Scheuermann RH. 2013. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods 10: 228–38 [CrossRef] [Google Scholar]
  5. Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D. 2013. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31: 545–52 [Google Scholar]
  6. Qiu P, Simonds EF, Bendall SC, Gibbs Jr KD, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK. 2011. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotech 29: 886–91 [CrossRef] [Google Scholar]
  7. Lo K, Brinkman RR, Gottardo R. 2008. Automated gating of flow cytometry data via robust model-based clustering. Cytometry Part A 73A: 321–32 [CrossRef] [Google Scholar]
  8. Qiu P, Simonds EF, Bendall SC, Gibbs KD, Jr., Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK. 2011. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29: 886–91 [CrossRef] [Google Scholar]
  9. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32: 381–6 [CrossRef] [Google Scholar]
  10. Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, Yuan G-C. 2014. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proceedings of the National Academy of Sciences 111: E5643–E50 [CrossRef] [Google Scholar]
  11. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332: 687–96 [CrossRef] [PubMed] [Google Scholar]
  12. Levine Jacob H, Simonds Erin F, Bendall Sean C, Davis Kara L, Amir E-ad D, Tadmor Michelle D, Litvin O, Fienberg Harris G, Jager A, Zunder Eli R, Finck R, Gedman Amanda L, Radtke I, Downing James R, Pe’er D, Nolan Garry P. 2015. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 162: 184–97 [CrossRef] [Google Scholar]
  13. Blanpain C. 2013. Tracing the cellular origin of cancer. Nat Cell Biol 15: 126–34 [CrossRef] [Google Scholar]
  14. Polak P, Karlic R, Koren A, Thurman R, Sandstrom R, Lawrence MS, Reynolds A, Rynes E, Vlahovicek K, Stamatoyannopoulos JA, Sunyaev SR. 2015. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518: 360–4 [CrossRef] [PubMed] [Google Scholar]
  15. Bendall SC, Davis KL, Amir el AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP, Pe’er D. 2014. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157: 714–25 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.