Open Access
Issue
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 01014
Number of page(s) 7
Section Session 1: Communication and Networking
DOI https://doi.org/10.1051/itmconf/20160701014
Published online 21 November 2016
  1. Shamir A. Identity-based cryptosystems and signature schemes[C] // Advances in cryptology. Springer Berlin Heidelberg, 1984: 47–53. [Google Scholar]
  2. Boneh D, Franklin M. Identity-based encryption from the Weil pairing[C] // Advances in Cryptology-CRYPTO 2001. Springer Berlin Heidelberg, 2001: 213–229. [CrossRef] [Google Scholar]
  3. Shamir A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612–613. [CrossRef] [MathSciNet] [Google Scholar]
  4. Baek J, Zheng Y. Identity-based threshold decryption[M]//Public Key Cryptography–PKC 2004. Springer Berlin Heidelberg, 2004: 262–276. [Google Scholar]
  5. Gentry C, Peikert C, Vaikuntanathan V. Trapdoors for hard lattices and new cryptographic constructions[C] // Proceedings of the fortieth annual ACM symposium on Theory of computing. ACM, 2008: 197–206. [Google Scholar]
  6. Cash D, Hofheinz D, Kiltz E, et al. Bonsai trees, or how to delegate a lattice basis[J]. Journal of cryptology, 2012, 25(4): 601–639. [CrossRef] [MathSciNet] [Google Scholar]
  7. Agrawal S, Boneh D, Boyen X. Efficient lattice (H) IBE in the standard model[M]//Advances in Cryptology–EUROCRYPT 2010. Springer Berlin Heidelberg, 2010: 553–572. [Google Scholar]
  8. El Bansarkhani R, Meziani M. An efficient lattice-based secret sharing construction[M] // Information Security Theory and Practice. Security, Privacy and Trust in Computing Systems and Ambient Intelligent Ecosystems. Springer Berlin Heidelberg, 2012: 160–168. [Google Scholar]
  9. Blakely G R. Safeguarding cryptographic keys[C]//Proc. AFIPS. 1979, 48: 313–317. [Google Scholar]
  10. Asmuth C, Bloom J. A modular approach to key safeguarding[J]. IEEE transactions on information theory, 1983, 30(2): 208–210. [CrossRef] [Google Scholar]
  11. Regev O. On lattices, learning with errors, random linear codes, and cryptography[J]. Journal of the ACM (JACM), 2009, 56(6): 34. [CrossRef] [Google Scholar]
  12. Alwen J, Peikert C. Generating shorter bases for hard random lattices[J]. Theory of Computing Systems, 2011, 48(3): 535–553. [CrossRef] [MathSciNet] [Google Scholar]
  13. Zhou F. Lattice theory and crypotography [M]. Science Press, 2013 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.