Open Access
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 01016
Number of page(s) 5
Section Session 1: Communication and Networking
Published online 21 November 2016
  1. S. A. Cook, “The complexity of theorem-proving procedures,” Proc. Third Annual ACM Sympos. Theory of Computing (1971), pp. 151–158. [Google Scholar]
  2. Kleer J D. Building expert systems: F. Hayes-Roth, D. A. Waterman and D. B. Lenat (Addison-Wesley Reading, MA, 1983); 444 pages, $32.50[J]. [Google Scholar]
  3. Artificial Intelligence, 1985, 25(1):105–107. [CrossRef] [Google Scholar]
  4. Nguyen T A, Perkins W A, Laffey T J, et al. Checking an Expert Systems Knowledge Base for Consistency and Completeness.[C] // International Joint Conference on Artificial Intelligence. 1985:375–378. [Google Scholar]
  5. Asirelli P, Santis M D, Martelli M. Integrity constraints in logic databases[J]. Journal of Logic Programming, 1985, 2(3):221–232. [CrossRef] [Google Scholar]
  6. Gallaire H, Minker J, Nicolas J M. Logic and Databases: A Deductive Approach[J]. Readings in Artificial Intelligence & Databases, 1989, 16(2):231–247. [Google Scholar]
  7. Scott Kirkpatrick, Bart Selman, Critical Behavior in the Satisfiability of Random Boolean Expressions, Science, Vol. 264, p. 1297–1301 (1994) [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. Karp R. M., Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E. Miller and J. W.Thatcher (eds.), Plenum Press, New York, 1972, 85–104. [Google Scholar]
  9. M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP complete graph problems, Theoret. Comput. Sci. 1 (3) (1976) 237–267. [Google Scholar]
  10. J. Håstad, Some optimal inapproximability results, J. ACM 48 (4) (2001) 798–859. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Aspvall, M.F. Plass, R.E. Tarjan, A linear-time algorithm for testing the truth of certain quantified Boolean formulas, Inform. Process. Lett. 8 (3) (1979) 121–123. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Zecchina Analytic and Algorithmic Solution of Random Satisfiability Problem [J]. 2002. [Google Scholar]
  13. H. Zhou Long Range Frustration in Finite-- Connectivity Spin Glasses: Application to the random K-satisfiability problem [J]. 2004. [Google Scholar]
  14. Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman & Lidror Troyansky, Determining computational complexity from characteristic ‘phase transitions’, Nature, Vol.400, p.133–137(1999) [CrossRef] [MathSciNet] [Google Scholar]
  15. William Wells Adams, Philippe Loustaunau, An Introduction to GrÄobner Bases. [M], Amer.Math.Society (1994). [Google Scholar]
  16. Coppersmith D, Gamarnik D, Hajiaghayi M and Sorkin G B 2004 Random MAX SAT, random MAX CUT, and their phase transitions Random. Struct. Algor. 24 4 502–545. [CrossRef] [Google Scholar]
  17. Kilby P, Slaney J, Thiébaux S, et al. Backbones and Backdoors in Satisfiability.[C] // Conference on. 2005:1368–1373. [Google Scholar]
  18. Wei W, Zhang R, Guo B, et al. Detecting the solution space of vertex cover by mutual determinations and backbones. [J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2012, 86(2):1–22. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.