Open Access
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 02001
Number of page(s) 5
Section Session 2: Signal and Image Processing
Published online 21 November 2016
  1. Rad B B, Masrom M, Ibrahim S. Camouflage in malware: from encryption to metamorphism[J]. International Journal of Computer Science and Network Security, 2012, 12(8): 74–83. [Google Scholar]
  2. Moser A, Kruegel C, Kirda E. Limits of static analysis for malware detection[C]//Computer security applications conference, 2007. ACSAC 2007. Twenty-third annual. IEEE, 2007: 421–430. [Google Scholar]
  3. Willems C, Holz T, Freiling F. Toward automated dynamic malware analysis using cwsandbox[J]. IEEE Security & Privacy, 2007 (2): 32–39. [CrossRef] [Google Scholar]
  4. Egele M, Scholte T, Kirda E, et al. A survey on automated dynamic malware-analysis techniques and tools[J]. ACM Computing Surveys (CSUR), 2012, 44(2): 6. [CrossRef] [Google Scholar]
  5. Bayer U, Comparetti P M, Hlauschek C, et al. Scalable, Behavior-Based Malware Clustering[C]//NDSS. 2009, 9: 8–11. [Google Scholar]
  6. Forrest S, Hofmeyr S, Somayaji A. The evolution of system-call monitoring[C]//Computer Security Applications Conference, 2008. ACSAC 2008. Annual. IEEE, 2008: 418–430. [Google Scholar]
  7. Irwin G W, Warwick K, Hunt K J. Neural network applications in control[M]. Iet, 1995. [CrossRef] [Google Scholar]
  8. Rieck K, Holz T, Willems C, et al. Learning and classification of malware behavior[M]//Detection of Intrusions and Malware, and Vulnerability Assessment. Springer Berlin Heidelberg, 2008: 108–125. [CrossRef] [Google Scholar]
  9. Shaid M, Zainudeen S, Maarof M A. Malware behavior image for malware variant identification[C]//Biometrics and Security Technologies (ISBAST), 2014 International Symposium on. IEEE, 2014: 238–243. [Google Scholar]
  10. Liang G, Pang J, Dai C. A Behavior-Based Malware Variant Classification Technique[J]. International Journal of Information and Education Technology, 2016, 6(4): 291. [CrossRef] [Google Scholar]
  11. Park Y, Reeves D, Mulukutla V, et al. Fast malware classification by automated behavioral graph matching[C]//Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research. ACM, 2010: 45. [Google Scholar]
  12. Cesare S, Xiang Y. Classification of malware using structured control flow[C]//Proceedings of the Eighth Australasian Symposium on Parallel and Distributed Computing-Volume 107. Australian Computer Society, Inc., 2010: 61–70. [Google Scholar]
  13. Tian R, Batten L M, Versteeg S C. Function length as a tool for malware classification[C]//Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd International Conference on. IEEE, 2008: 69–76. [CrossRef] [Google Scholar]
  14. Islam R, Tian R, Batten L, et al. Classification of malware based on string and function feature selection[C] // Cybercrime and Trustworthy Computing Workshop (CTC), 2010 Second. IEEE, 2010: 9–17. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.