Open Access
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 02004
Number of page(s) 9
Section Session 2: Signal and Image Processing
Published online 21 November 2016
  1. J. Wright, A Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma . Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 210–227(2009) [CrossRef]
  2. J .Z. Huang, X. L. Huang, D. Metaxas Simultaneous image transformation and sparse representation recovery. In: Proceedings of the 26th IEEE Conference on Computer Vision and Image Recognition. Anchorage United States. 1–8(2008)
  3. J. Yang, L. Zhang, Y. Xu, and J.Y. Yang, Beyond sparsity: The role of L1-optimizer in pattern classification, Pattern Recognit,45 1104–1118(2012) [CrossRef]
  4. J. Yang, A. F. Frang, J.-Y. Yang, D. Zhang, and Z. Jin, KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 27(2) 230–244 (2005) [CrossRef]
  5. H. Cevikalp, M. Neamtu, and M. Wilkes, Discriminative common vector method with kernels, IEEE Trans. Neural Netw, 17(6) 1550–1565(2006) [CrossRef]
  6. L. Zhang, M. Yang and X. C. Feng, Sparse representation or collaborative representation: Which helps face recognition? In Proc. IEEE Int. Conf. Comput. Vis., Nov. 3 7(2011)
  7. R. He, W.-S. Zheng and B.G. Hu, Maximum Correntropy criterion for robust face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 33, 1561–1576(2011) [CrossRef]
  8. R. He, B.-G. Hu, and X. T. Yuan, Robust discriminant analysis based on non-parametric maximum entropy, In Proc. Asian Conf. Mach. Learn, 120–134(2009)
  9. Z. Zhang, H. Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Scientific Computing, 26 313–338(2004) [CrossRef]
  10. Z. Y. Zhang, J. Wang, H. Y. Zha. Adaptive manifold learning IEEE. Trans. Pattern .Anal. Mach. Int. 32 253–265 (2012) [CrossRef]
  11. Z. Lai, M. Wan, Z. Jin, and J. Yang, Sparse two-dimensional local discriminant projections for feature extraction, Neuro.Computing, 4 629–637,(2011)
  12. M. Yang, L. Zhang, Gabor feature based spare representation for face recognition with Gabor occlusion dictionary, In ECCV,448–461 (2010)
  13. N. Zhang, J. K Yang. Nearest neighbor based local sparse representation classifier, In: Proceedings of the 2010 Chinese Conference on Pattern Recognition. Chongqing, China: CCPR, 400–404 (2010)
  14. R. Tibshiraniomput, Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B, 73(3) 273–282(2011) [CrossRef] [MathSciNet]
  15. J Zhang, R. Jin, Y. M. Yang, Y. M. Hauptmann, A. G . Modified, Logistic regression: an approximation to SVM and its applications in large-scale text categorization, In: Proceedings of the 20th International Conference on Machine Learning. Washington, United states: ICML, 888–895(2003)
  16. Y. FU, T.S. Huang. Graph embedded analysis for head pose estimation, IEEE International Conf. on Automatic Face and Gesture Recognition. (2006)
  17. H .T. Chen, H. W. Chang, and T. L. Liu, Local discriminant embedding and its variants, Proc. Conf. Comput.Vis. Pattern Recognit. 846–853(2005)
  18. S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, Graph embedding and extension: A general framework for dimensionality reduction, IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51(2007) [CrossRef]
  19. D. Cai, X. He, Y. Hu, J. Han and T. Huang, Learning a spatially smooth subspace for face recognition, Proc. Comput.Soc. Conf. Comput.Vis. Pattern Recognit., 1–7 (2007)
  20. Z. Fan, Y. Xu, and D. Zhang, Local linear discriminant analysis framework using sample neighbors, IEEE Trans. Neural Netw, 22, 1119–1132 (2011) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.