Open Access
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 02004
Number of page(s) 9
Section Session 2: Signal and Image Processing
Published online 21 November 2016
  1. J. Wright, A Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma . Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 210–227(2009) [CrossRef] [Google Scholar]
  2. J .Z. Huang, X. L. Huang, D. Metaxas Simultaneous image transformation and sparse representation recovery. In: Proceedings of the 26th IEEE Conference on Computer Vision and Image Recognition. Anchorage United States. 1–8(2008) [Google Scholar]
  3. J. Yang, L. Zhang, Y. Xu, and J.Y. Yang, Beyond sparsity: The role of L1-optimizer in pattern classification, Pattern Recognit,45 1104–1118(2012) [CrossRef] [Google Scholar]
  4. J. Yang, A. F. Frang, J.-Y. Yang, D. Zhang, and Z. Jin, KPCA plus LDA: A complete kernel fisher discriminant framework for feature extraction and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 27(2) 230–244 (2005) [CrossRef] [Google Scholar]
  5. H. Cevikalp, M. Neamtu, and M. Wilkes, Discriminative common vector method with kernels, IEEE Trans. Neural Netw, 17(6) 1550–1565(2006) [CrossRef] [Google Scholar]
  6. L. Zhang, M. Yang and X. C. Feng, Sparse representation or collaborative representation: Which helps face recognition? In Proc. IEEE Int. Conf. Comput. Vis., Nov. 3 7(2011) [Google Scholar]
  7. R. He, W.-S. Zheng and B.G. Hu, Maximum Correntropy criterion for robust face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 33, 1561–1576(2011) [CrossRef] [Google Scholar]
  8. R. He, B.-G. Hu, and X. T. Yuan, Robust discriminant analysis based on non-parametric maximum entropy, In Proc. Asian Conf. Mach. Learn, 120–134(2009) [Google Scholar]
  9. Z. Zhang, H. Zha. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Scientific Computing, 26 313–338(2004) [Google Scholar]
  10. Z. Y. Zhang, J. Wang, H. Y. Zha. Adaptive manifold learning IEEE. Trans. Pattern .Anal. Mach. Int. 32 253–265 (2012) [CrossRef] [Google Scholar]
  11. Z. Lai, M. Wan, Z. Jin, and J. Yang, Sparse two-dimensional local discriminant projections for feature extraction, Neuro.Computing, 4 629–637,(2011) [Google Scholar]
  12. M. Yang, L. Zhang, Gabor feature based spare representation for face recognition with Gabor occlusion dictionary, In ECCV,448–461 (2010) [Google Scholar]
  13. N. Zhang, J. K Yang. Nearest neighbor based local sparse representation classifier, In: Proceedings of the 2010 Chinese Conference on Pattern Recognition. Chongqing, China: CCPR, 400–404 (2010) [Google Scholar]
  14. R. Tibshiraniomput, Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society: Series B, 73(3) 273–282(2011) [CrossRef] [MathSciNet] [Google Scholar]
  15. J Zhang, R. Jin, Y. M. Yang, Y. M. Hauptmann, A. G . Modified, Logistic regression: an approximation to SVM and its applications in large-scale text categorization, In: Proceedings of the 20th International Conference on Machine Learning. Washington, United states: ICML, 888–895(2003) [Google Scholar]
  16. Y. FU, T.S. Huang. Graph embedded analysis for head pose estimation, IEEE International Conf. on Automatic Face and Gesture Recognition. (2006) [Google Scholar]
  17. H .T. Chen, H. W. Chang, and T. L. Liu, Local discriminant embedding and its variants, Proc. Conf. Comput.Vis. Pattern Recognit. 846–853(2005) [Google Scholar]
  18. S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, Graph embedding and extension: A general framework for dimensionality reduction, IEEE Trans. Pattern Anal. Mach. Intell. 29, 40–51(2007) [CrossRef] [Google Scholar]
  19. D. Cai, X. He, Y. Hu, J. Han and T. Huang, Learning a spatially smooth subspace for face recognition, Proc. Comput.Soc. Conf. Comput.Vis. Pattern Recognit., 1–7 (2007) [Google Scholar]
  20. Z. Fan, Y. Xu, and D. Zhang, Local linear discriminant analysis framework using sample neighbors, IEEE Trans. Neural Netw, 22, 1119–1132 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.