Open Access
Issue
ITM Web Conf.
Volume 7, 2016
3rd Annual International Conference on Information Technology and Applications (ITA 2016)
Article Number 04002
Number of page(s) 3
Section Session 4: Information System and its Applications
DOI https://doi.org/10.1051/itmconf/20160704002
Published online 21 November 2016
  1. Barabási A L. The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005,435(7039): 207–211 [CrossRef] [PubMed] [Google Scholar]
  2. Brockmann Dirk, Lars Hufnagel, Theo Geisel. The scaling laws of human travel[J]. Nature, 2006, 439(7075): 462–465. [CrossRef] [PubMed] [Google Scholar]
  3. Lu Xin, Linus Bengtsson, Petter Holme. Predictability of population displacement after the 2010 Haiti earthquake [J]. Proceedings of the National Academy of Sciences, 2012, 109(29): 11576–11581. [CrossRef] [Google Scholar]
  4. Pickard, Galen, et al. “Time-critical social mobilization.” Science, 2011, 334(6055):509–512. [CrossRef] [PubMed] [Google Scholar]
  5. Zhao Kun, Juliette Stehlé, Ginestra Bianconi, Alain Barrat. Social network dynamics of face-to-face interactions [J]. Physical Review E, 2011, 83: 056109. [CrossRef] [Google Scholar]
  6. Wang Sun-Chong, Tseng Jie-Jun, Tai Chung-Ching, Lai Ke-Hung, Wu Wei-Shao, Chen Shu-Heng. Network topology of an experimental futures exchange [J]. The European Physical Journal B, 2008, 62(1): 105–111. [CrossRef] [EDP Sciences] [Google Scholar]
  7. Vespignani, Alessandro. Predicting the behavior of techno-social systems [J]. Science, 2009, 325(5939): 425–428. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  8. Guillemin, Fabrice, Thierry Houdoin, Stephanie Moteau. Volatility of YouTube content in Orange networks and consequences [C]. In Communications (ICC), 2013 IEEE International Conference on, pp. 2381-2385. IEEE, 2013. [CrossRef] [Google Scholar]
  9. Leskovec Jure, Horvitz. Eric Planetary-scale views on a large instant-messaging network [C]. In Proceedings of the 17th international conference on World Wide Web, pp. 915-924. ACM, 2008. [Google Scholar]
  10. Chun Hyunwoo, Kwak Haewoon, Eom Young-Ho, Ahn Yong-Yeol, Moon Sue, Jeong Hawoong. Comparison of online social relations in volume vs interaction: a case study of cyworld [C]. In Proceedings of the 8th ACM SIGCOMM conference on Internet measurement, pp. 57-70. ACM, 2008. [CrossRef] [Google Scholar]
  11. HONG Wei, HAN Xiao-Pu, ZHOU Tao, WANG Bing-Hong. Heavy-tailed statistics in short-message communication[J]. Chinese Physics Letters, 2009, 2009(2):297–299. [Google Scholar]
  12. Mahanti. A, Carlsson. N, Arlitt. M, Williamson. C. A tale of the tails: Power-laws in Internet measurements [J]. Network, 2013, 27(1): 59–64. [Google Scholar]
  13. Forecast C V N I. Cisco Visual Networking Index: Global Mobile data Traffic Forecast Update 2009-2014[J]. Cisco Public Information, February, 2010, 9. [Google Scholar]
  14. Ingrid Lunden. Mobile Data Traffic To Grow 300% Globally By 2017 Led By Video, Web Use, Says Strategy Analytics. http://techcrunch.com/2013/07/03/mobile-data-use-to-grow-300-globally-by-2017-led-by-video-web-traffic-sa ys-strategy-analytics/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.