Open Access
ITM Web Conf.
Volume 9, 2017
The 2016 International Conference Applied Mathematics, Computational Science and Systems Engineering
Article Number 03010
Number of page(s) 7
Section Systems Engineering
Published online 09 January 2017
  1. K. Kraus, Photogrammetry. Bonn: Dümmler, 1, 2 (1993) [Google Scholar]
  2. L. Mussio, A. Pozzoli, “Non-Linear Problems of Analytical Photogrammetry”, IAPRS, 34, Part 6/W11, pp. 210-215 (2003) [Google Scholar]
  3. L. Mussio, A. Pozzoli, “Quick Solutions particularly in Close Range Photogrammetry”, IAPRS, 34, Part 6/W12, pp. 273-278 (2003) [Google Scholar]
  4. V. Barrile, D. Lamari, V. Gelsomino, “Tecniche imaging per la modellazione 3D della superficie marina”, Atti del 61° Convegno nazionale SIFET, Lecce (2016) [Google Scholar]
  5. Y.L. Abel-Aziz, H.M. Karara, “Direct Linear Transformation into Object Space Coordinates in Close-Range Photogrammetry”, Proc. of Symp. on Close-Range Photogramm., pp. 1-18 (1971) [Google Scholar]
  6. S. Finsterwalder, “Die Geometrischen Grundlagen der Photogrammetrie”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 6, Teubner, Leipzig (1899) [Google Scholar]
  7. H.G. Fourcade, “A new method of aerial surveying”, Trans. Roy. Soc. of South Africa, 14, 1, pp. 93-112 (1926) [CrossRef] [Google Scholar]
  8. S. Hattori, Y. Myint, “Automatic Estimation of Initial Approximations of Parameters for Bundle Adjustment”, PE&RS, 61, 7, pp. 909-915 (1995) [Google Scholar]
  9. C. Heipke, “Automation of Interior, Relative and Absolute Orientation”, ISPRS J Photogramm Remote Sens., 52, pp. 1-19 (1997) [CrossRef] [Google Scholar]
  10. H.-P. Pan, “A Direct Closed-Form Solution to General Relative Orientation”, Technical Report on Photogrammetron., pp. 1-20 (1996) [Google Scholar]
  11. E. Kruppa, “Zur Ermittlung eines Objektes aus zwei Perspektiven mit inner Orientierung”, Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl. (Abt. IIa 122), pp. 1939–1948 (1913) [Google Scholar]
  12. H. C. Longuet–Higgins, “A computer algorithm for reconstructing a scene from two projections”, Nature, 293, 10, pp. 133-135 (1981) [CrossRef] [Google Scholar]
  13. H.-P. Pan, “A direct closed-form solution to general relative orientation of two stereo views”, Digit. Sign. Process., 9, 3, Academic Press, pp. 195-211 (1999) [CrossRef] [Google Scholar]
  14. T. Sarjakoski, “Concept of a completely digital stereoplotter”, The Photogramm. Journ. of Finland, 2, pp. 95–100 (1981) [Google Scholar]
  15. H. Schmid, “An analytical treatment of the orientation of a photogrammetric camera”, Photogr. Eng., 20, pp. 765–781 (1954) [Google Scholar]
  16. G. Schut, “Analytical aerial triangulation and comparison between it and instrumental aerial triangulation”, Photogrammetria, 12, pp. 311-318 (1955-56) [CrossRef] [Google Scholar]
  17. P. Stefanovic, “Relative Orientation – a new approach”, ITC Journal, pp. 417-448 (1973) [Google Scholar]
  18. E.H. Thompson, “A rational algebraic formulation of the problem of the relative orientation”, Photogramm. Rec., 3, 14, pp. 152-159 (1959) [CrossRef] [Google Scholar]
  19. P.H.S. Torr, D.W. Murray, “The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix”, Int J Comput Vision, 24, 3, pp. 271-300 (1997) [CrossRef] [Google Scholar]
  20. R.I. Hartley, and A. Zisserman, “Multiple View Geometry”, Comp. Vis., Cambridge University (2000) [Google Scholar]
  21. K. Rinner, R. Burkhardt, Photogrammetrie. In Handbuch der Vemessungskunde, (Hsgb. Jordan, Eggert, Kneissel), 3, a/3, Metzlersche Verlagbuchhandlung, p. 2286 (1972) [Google Scholar]
  22. P.J. Rousseeuw, A.M. Leroy, Robust Regression and Outliers Detection, Wiley, New York (1987) [CrossRef] [Google Scholar]
  23. G.H. Schut, “On Exact Linear Equation for the Computation of Rotational Elements of Absolute Orientation”, Photogrammetria. 17, 1, pp. 34-37 (1961) [CrossRef] [Google Scholar]
  24. J. K. Semple, G.T. Kneebone, Algebraic Projective Geometry, Oxford Science (1952) [Google Scholar]
  25. P. Stefanovic, “Relative Orientation – a new approach”, ITC Journal, pp. 417-448 (1973) [Google Scholar]
  26. J. Weng, T.S. Huang, N. Ahuja, Motion and Structures from Image Sequences, Springer (1993) [CrossRef] [Google Scholar]
  27. O.D. Faugeras, Q.T. Luong, S.J. Maybank, “Camera self-calibration: Theory and experiments”, Proceedings of the 2nd ECCV, pp. 321-334. (1992) [Google Scholar]
  28. M.A. Fischler, R.C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography”, Comm. of the Ass. for Computing Machinery, 24, pp.381–395 (1981) [Google Scholar]
  29. R.I. Hartley, “Estimation of relative camera position for uncalibrated cameras”, Proceedings of the 2nd ECCV, pp. 579-587 (1992) [Google Scholar]
  30. R.I. Hartley, “Lines and Points in Three Views – a Unified Approach”, Proc. of “Image Understanding Workshop”, Monterey, CA, pp. 1009–1016 (1994) [Google Scholar]
  31. I. Niini, “Comparison of the projective block adjustment method versus the bundle method”, IAPRS, 33, Part B3, pp. 643-650 (2000) [Google Scholar]
  32. C. Ressl, “An introduction to the relative orientation using the trifocal tensor”, IAPRS, 33, Part B3, pp.769-776 (2000) [Google Scholar]
  33. M.E. Spetsakis, J. Aloimonos, “A Unified Theory of Structure from Motion”, Proc. of Image Understanding Workshop, Pittsburg, Pennsylvania, pp. 271-283 (1990) [Google Scholar]
  34. P.H.S. Torr, A. Zisserman, S. Maybank, “Robust Detection of Degeneracy”, Proceedings of the 5th ECCV, Boston, pp. 1037–1044 (1995) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.