Open Access
Issue
ITM Web Conf.
Volume 11, 2017
2017 International Conference on Information Science and Technology (IST 2017)
Article Number 02003
Number of page(s) 9
Section Session II: Computer Vision and Image Processing
DOI https://doi.org/10.1051/itmconf/20171102003
Published online 23 May 2017
  1. Bai zhengjian, Donatelli Marco, Capizzano Stefano Serra, Fast preconditioners for total variation deblurring with anti-reflective boundary conditions, SIAM Journal on matrix analysis and applications, 32, 3(2011) [Google Scholar]
  2. Serafini Thomas, Zanghirati Gaetano, Zanni Luca, Gradient projection methods for large quadratic programs and applications in training support vector machines, Optimization Methods and Software, 20, 2–3(2004) [CrossRef] [MathSciNet] [Google Scholar]
  3. Du Z M, Li H A, Kang B S, Ye F Y, Recovery method of compressed sensing signals based on quadratic convergence regularization with a smooth functional[J], Journal of Image and Graphics, 21, 4(2016). [Google Scholar]
  4. Li X C, Bian S X, Li Y Y, Survey of convex energy functional regularization model of image restoration[J], Journal of Image and Graphics, 21, 4(2016). [Google Scholar]
  5. Leonid I. Rudin, Stanley Osher, Emad Fatemi, Nonlinear total variation based noise removal algorithms, Physical D: Nonlinear Phenomena, 60, 1(1992) [CrossRef] [Google Scholar]
  6. Curtis R. Vogel, Computational methods for inverse problems(SIAM: Society for Industrial and Applied Mathematics, 2002) [CrossRef] [Google Scholar]
  7. Combettes P. L, V. Wajs, Signal recovery by proximal forward-backward splitting, SIAM Journal on Multiscale Modeling and Simulation, 4, 4(2005) [Google Scholar]
  8. Beck Amir, Teboulle Marc, A fast dual proximal gradient algorithm for convex minimization and applications, Operations Research Letters, 42, 1(2014) [CrossRef] [MathSciNet] [Google Scholar]
  9. Antonin Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20, 1–2(2004) [Google Scholar]
  10. Duran Joan, Coll Bartomeu, Sbert Catalina, Chambolle’s projection algorithm for total variation denoising, Image Processing on Line, 3, (2013) [Google Scholar]
  11. Antonin Chambolle, Thomas Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision,40,1( 2011) [CrossRef] [MathSciNet] [Google Scholar]
  12. Goldstein Tom, Esser Ernie, Baraniuk Richard, Adaptive primal-dual hybrid gradient methods for saddle- point problems, http://arxiv.org/abs/1305.0546 (2013) [Google Scholar]
  13. Gilles Aubert, Pierre Kornprobst, Mathematical problems in image processing, partial differential equations and the calculus of variations, second edition (Springer-Verlag, New York, USA, 2006) [Google Scholar]
  14. Katrina Palmer Lee, James G. Nagy, Lisa Perrone, Iterative methods for image deblurring: a matlab object- oriented approach, Numerical Algorithms, 36, 1(2004) [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.