Open Access
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
Article Number 03027
Number of page(s) 5
Section Session 3: Computer
Published online 05 September 2017
  1. Mousa A, Bentahar J, An Efficient QoS-aware Web Services Selection Using Social Spider Algorithm, Procedia Computer Science. 94 (2016) 176–182. [CrossRef] [Google Scholar]
  2. Christi J C R, Premkumar K, Survey on recommendation and visualization techniques for QOS-aware web services, IEEE International Conference on Information Communication and Embedded Systems, 2015, pp.1–6. [Google Scholar]
  3. Yu T, Zhang Y, Lin K J, Efficient algorithms for Web services selection with end-to-end QoS constraints, Acm Transactions on the Web, 1 (2007), Article 6. [Google Scholar]
  4. Karimi, Mohammad Bagher, A. Isazadeh, and A. M. Rahmani, QoS-aware service composition in cloud computing using data mining techniques and genetic algorithm, Journal of Supercomputing (2016) 1–29. [Google Scholar]
  5. Wang S, Hsu C H, Liang Z, et al. Multi-user web service selection based on multi-QoS prediction[J]. Information Systems Frontiers, 16 (2014) 143–152. [CrossRef] [MathSciNet] [Google Scholar]
  6. Zhu X, Qin X, Qiu M. QoS-Aware Fault-Tolerant Scheduling for Real-Time Tasks on Heterogeneous Clusters, IEEE Transactions on Computers, 60 (2011) 800–812. [CrossRef] [MathSciNet] [Google Scholar]
  7. Zibin Zheng, and M.R. Lyu, Personalized Reliability Prediction of Web Services, ACM Transactions on Software Engineering and Methodology (TOSEM), 22 (2013) 12:1–12:25 [Google Scholar]
  8. Z. Zheng, M. Lyu, and I. King, “Wsrec: A collaborative filtering based web service recommender system,” in Proceedings of the 2009 IEEE international Conference on Web Services, 2009, pp. 437–444. [CrossRef] [Google Scholar]
  9. Ma, Y., Wang, S., Hung, P. C. K., Hsu, C. H., Sun, Q., & Yang, F. A highly accurate prediction algorithm for unknown web service qos values. IEEE Transactions on Services Computing, 9 (2015) 511–523. [CrossRef] [Google Scholar]
  10. Tang M, Zheng Z, Kang G, et al. Collaborative Web Service Quality Prediction via Exploiting Matrix Factorization and Network Map. IEEE Transactions on Network & Service Management, 13 (2016) 126–137. [CrossRef] [Google Scholar]
  11. Su K, Ma L L, Sun Y F, et al. Non-negative matrix factorization model for Web service QoS prediction, Journal of Zhejiang University (Engineering Science Edition, 49 (2015) 1358–1366. [Google Scholar]
  12. Pinjia He, Jieming Zhu, Zibin Zheng, Jianlong Xu, and Michael R. Lyu, Location-based Hierarchical Matrix Factorization for Web Service Recommendation, International Conference on Web Services, Alaska, 2014, pp.297–304. [Google Scholar]
  13. Jianlong Xu, Zibin Zheng, and Michael R. Lyu, Web Service Personalized QoS Prediction via Reputation-based Matrix Factorization, IEEE Transactions on Reliability, 65 (2016) 28–37 [CrossRef] [Google Scholar]
  14. Shalev-Shwartz S: Online Learning and Online Convex Optimization. Foundations and Trends in Machine Learning, 14 (2011) 107–194. [CrossRef] [EDP Sciences] [Google Scholar]
  15. Abernethy J, Canini K, Langford J, and Simma A, Online Collaborative Filtering, 2011, pp. 271–280. [Google Scholar]
  16. Zhi Qiao, Peng Zhang, Wenjia Niu, Chuan Zhou, Peng Wang, Li Guo, Online Nonparametric Max-Margin Matrix Factorization for Collaborative Prediction, 2014 IEEE International Conference on Data Mining (ICDM), Shenzhen, 2014, pp.520–529 [CrossRef] [Google Scholar]
  17. Lin F, Zhou X, Zeng W. Sparse Online Learning for Collaborative Filtering. International Journal of Computers Communications & Control, 2016, 11(2):248. [CrossRef] [Google Scholar]
  18. Yilei Zhang, Zibin Zheng, Michael R. Lyu: WSPred: A Time-Aware Personalized QoS Prediction Framework for Web Services. In: the 22th IEEE Symposium on Software Reliability Engineering (ISSRE), Los Alamitos, California, 2011, pp. 210–219. [CrossRef] [Google Scholar]
  19. R. Salakhutdinov and A. Mnih. Probabilistic Matrix Factorization. Advances in Neural Information Processing Systems, 2007, pp. 1257–1264. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.