Open Access
Issue
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
Article Number 05016
Number of page(s) 5
Section Session 5: Information Processing Methods and Techniques
DOI https://doi.org/10.1051/itmconf/20171205016
Published online 05 September 2017
  1. J. Gama: Knowledge Discovery from Data Streams, 1st ed. Chapman & Hall/CRC (2010). [CrossRef] [Google Scholar]
  2. P. Domingos, G. Hulten.: Mining high-speed data streams. Proc. 6th ACM Int. Conf. on Knowledge Discovery and Data Mining, pp. 71–80 (2000). [Google Scholar]
  3. X. Zhu, P. Zhang, X. Lin, Y. Shi.: Active learning from stream data using optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 40, pp. 1607–1621 (2010). [CrossRef] [Google Scholar]
  4. J. Attenberg, F. Provost.: Online active inference and learning. Proc. 17th ACM Int. Conf. on Knowledge Discovery and Data Mining, pp. 186–194 (2011). [Google Scholar]
  5. D. Cohn, L. Atlas, R. Ladner.: Improving generalization with active learning. Mach. Learn 15(2), 201–221 (1994). [Google Scholar]
  6. L. I. Kuncheva.: Classifier ensembles for detecting concept change in streaming data: Overview and perspectives. in Proc. 2nd Workshop SUEMA 2008, pp. 5–10 (2008). [Google Scholar]
  7. D. Brzezinski, J. Stefanowski. Reacting to different types of concept drift: the accuracy updated ensemble algorithm. Neural Networks & Learning Systems IEEE Transactions on, 25(1), 81–94 (2014). [CrossRef] [Google Scholar]
  8. H. Wang, W. Fan, P. Yu, J. Han.: Mining concept-drifting data streams using ensemble classifiers. in Proc. KDD, pp. 226–235 (2003). [Google Scholar]
  9. R. Elwell, R. Polikar.: Incremental learning of concept drift in nonstationary environments. IEEE Transactions on Neural Networks, vol. 22, pp. 1517–1531 (2011). [CrossRef] [Google Scholar]
  10. A. Bifet et al..: Leveraging bagging for evolving data streams. in Proc. ECML/PKDD, Part I, pp. 135–150 (2010). [Google Scholar]
  11. L. L. Minku, X. Yao.: DDD: A new ensemble approach for dealing with concept drift. IEEE Transactions on Knowledge and Data Engineering, 24(4), pp.619–633 (2012). [CrossRef] [Google Scholar]
  12. N. C. Oza, S. J. Russell.: Experimental comparisons of online and batch versions of bagging and boosting. in Proc. 7th ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, pp. 359–364 (2001). [Google Scholar]
  13. J. Z. Kolter, M. A. Maloof.: Dynamic weighted majority: An ensemble method for drifting concepts. J. Machine Learning Research, vol. 8, pp. 2755–2790 (2007). [Google Scholar]
  14. R. Kirkby.: Improving Hoeffding trees. Ph.D. dissertation, Department of Computer Science, University of Waikato, (2007). [Google Scholar]
  15. I. Zliobaite, A. Bifet, B. Pfahringer B.: Active learning with drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems, vol. 25, pp. 27–39 (2014). [CrossRef] [Google Scholar]
  16. W. Xu, F. Zhao, Z. Lu. “Active learning over evolving data streams using paired ensemble framework.” Eighth International Conference on Advanced Computational Intelligence, pp.180–185, (2016). [Google Scholar]
  17. Y. Fu, X. Zhu, B. Li, “A survey on instance selection for active learning,” Knowledge and Information Systems, vol. 35, pp. 249–283 (2013). [CrossRef] [Google Scholar]
  18. D. Ienco, B. Pfahringer, I. Zliobaite, “High density-focused uncertainty sampling for active learning over evolving stream data”, Proc. 3rd Int. Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, pp. 133–148 (2014). [Google Scholar]
  19. A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer.: MOA: Massive online analysis. Journal of Machine Learning Research, vol. 11, 1601–1604 (2010). [Google Scholar]
  20. E. Ikonomovska, J. Gama, S. Dzeroski.: Learning model trees from evolving data streams. Data Mining Knowl. Discovery, 23(1), 128–168 (2011). [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Frank, A. Asuncion. (2010). UCI machine learning repository [Online]. Available: http://archive.ics.uci.edu/ml [Google Scholar]
  22. M. Harries, C. Sammut, K. Horn.: Extracting hidden context. Machine Learning, 32(2), 101–126 (1998). [CrossRef] [EDP Sciences] [Google Scholar]
  23. M. Tavallaee, E. Bagheri, W. Lu.: A detailed analysis of the KDD CUP 99 data set. Proc. 2nd IEEE Symposium on Computational Intelligence for Security and Defence Applications, pp. 1–9 (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.