Open Access
Issue
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
Article Number 05015
Number of page(s) 6
Section Session 5: Information Processing Methods and Techniques
DOI https://doi.org/10.1051/itmconf/20171205015
Published online 05 September 2017
  1. Agarwal, S., Awan, A. and Roth, D., “Learning to Detect Objects in Images via a Sparse Part-Based Representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, 26(11), pp.1475–1490, 2004. [CrossRef] [Google Scholar]
  2. Alexe, B., Deselaers, T., and Ferrari, V., “What is an object?” In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 73–80, 2010. [Google Scholar]
  3. Anderson, B. A., “A value-driven mechanism of attentional selection,” Journal of Vision, vol. 13, no. 3, pp. 1–16, 2010. [EDP Sciences] [Google Scholar]
  4. Awh, E., Belopolsky, A. V., and Theeuwes, J., “Top-down versus bottom-up attentional control: A failed theoretical dichotomy,” Trends in cognitive sciences, 16(8), pp.437–443, 2012. [CrossRef] [Google Scholar]
  5. Belopolsky, A. V., “Common priority map for selection history, reward and emotionin the oculomotor system,” Perception, vol. 0, no. 0, pp.1–14, 2015. [Google Scholar]
  6. Borji, A., Sihite, D. N., and Itti., L., “Salient object detection: a benchmark,” In Proc. European Conf. on Computer Vision (ECCV), pp.414–429, 2012. [EDP Sciences] [Google Scholar]
  7. Borji, A., and Itti, L., “State-of-the-art in Visual Attention Modeling,” IEEE Trans. Pattern Anal. Mach. Intell., PAMI 35(1), pp.185–207, 2013. [CrossRef] [MathSciNet] [Google Scholar]
  8. Cerf, M., Harel, J., Einhauser, W., and Koch, C., “Predicting human gaze using low-level saliency combined with face detection,” Neural Information Processing Systems, vol. 20, pp. 241–248, 2007. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Dalal, N., and Triggs, B., “Histograms of oriented gradients for human detection,” In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Vol. 1, pp. 886–893, 2005. [Google Scholar]
  10. Della Libera, C., and Chelazzi, L., “Visual selective attention and the effects of monetary reward,” Psychological Science, vol. 17, pp. 222–227, 2006. [CrossRef] [Google Scholar]
  11. Desimone, R., and Duncan, J., “Neural mechanisms of selective visual attention,” Annual Reviews of Neuroscience. 18, 193–222, 1995. [CrossRef] [MathSciNet] [Google Scholar]
  12. Hickey, C., Chelazzi, L., Theeuwes, J., “Reward changes salience in human vision via the anterior cingulated,” The Journal of Neuroscience, 30(33), pp.11096–11103, 2010. [CrossRef] [Google Scholar]
  13. Judd, T., Ehinger, K., Durand, F., and Torralba, A., “Learning to predict where humans look,” in Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV ‘09), pp.2106–2113, Kyoto, Japan, September 2009. [CrossRef] [Google Scholar]
  14. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., and Shum, H., “Learning to detect a salient object,” Pattern Anal. Mach. Intell. PAMI 33(2), pp.353–367, 2011. [CrossRef] [Google Scholar]
  15. Ludwig, O., Delgado, D., Goncalves, V., Nunes, U., “Trainable Classifier-Fusion Schemes: An Application To Pedestrian Detection,” in: 12th Internat. Conf. on Intelligent Transportation Systems, pp.432–437, 2009. [Google Scholar]
  16. Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T., “LabelMe: a database and web-based tool for image annotation,” International Journal of Computer Vision, 77(1-3), pp.157–173, 2008. [CrossRef] [Google Scholar]
  17. Samaria, F., Harter, A., “Parameterisation of a stochastic model for human face identification,” in 2nd IEEE Workshop on Applications of Computer Vision December, Sarasota (Florida), 1994. [Google Scholar]
  18. Seo, H. J., Milanfar, P., “Static and Space-Time Visual Saliency Detection by Self-Resemblance,” J. Vision, vol. 9, no. 12, pp. 1–27, 2009. [CrossRef] [Google Scholar]
  19. Seo, H. J., Milanfar, P., “Training-free, generic object detection using locally adaptive regression kernels,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(9), pp. 1688–1704, 2010. [CrossRef] [Google Scholar]
  20. Tatler, B. W., Hayhoe, M. M., Land, M. F., et al.. “Eye guidance in natural vision: Reinterpreting salience,” Journal of Vision, 11(5), pp. 1–23, 2011. [CrossRef] [Google Scholar]
  21. Umemoto, A., Scolari, M., Vogel, E. K., and Awh, E., “Statistical learning induces discrete shifts in the allocation of working memory resources,” Journal of Experimental Psychology: Human Perception and Performance, 36(6), pp.1419–1429, 2010. [CrossRef] [Google Scholar]
  22. Walther, D., Koch, C., “Modeling attention to salient proto-objects,” Neural Networks, vol. 19, pp.1395–1407, 2006. [CrossRef] [Google Scholar]
  23. Yang, J., and Yang, M., “Top-down visual saliency via joint crf and dictionary learning,” In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2296–2303, 2012. [Google Scholar]
  24. Yang, C., Zhang, L.H, Lu, H.C, & Ruan, X., “Saliency detection via graph-based manifold ranking,” In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.3166–3173, 2013. [Google Scholar]
  25. Zhang, D. Z., Liu, C. C., “A salient object detection framework beyond top-down and bottom-up mechanism,” Biologically Inspired Cognitive Architectures, vol.9, pp. 1–8. 2014. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.