Open Access
ITM Web Conf.
Volume 13, 2017
2nd International Conference on Computational Mathematics and Engineering Sciences (CMES2017)
Article Number 01007
Number of page(s) 5
Published online 02 October 2017
  1. B. Altay and F. Basar, On the fine spectrum of the difference operator Δ on c0 and c, Inform. Sci. 168(1-4) (2004) 217–224. [CrossRef] [MathSciNet] [Google Scholar]
  2. Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009) 427–434. [CrossRef] [MathSciNet] [Google Scholar]
  3. Y. Altin; M. Et and R. Çolak, Lacunary statistical and lacunary strongly convergence of generalized difference sequences of fuzzy numbers, Comput, Math. Appl. 52(6-7) (2006) 1011–1020. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. K. Bhardwaj and S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl. 2013: 315 (2013) 9 pp. [CrossRef] [Google Scholar]
  5. V. K. Bhardwaj; S. Gupta and R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Anal. 5(2) (2014) 1–11. [MathSciNet] [Google Scholar]
  6. M. Et, On some generalized Cesàro difference sequence spaces, İstanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/97), 221–229. [MathSciNet] [Google Scholar]
  7. M. Et; H. Altinok and Y. Altin, On some generalized sequence spaces, Appl. Math. Comput. 154(1) (2004) 167–173. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput. 219(17) (2013) 9372–9376. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Et; M. Mursaleen and M. Işık, On a class of fuzzy sets defined by Orlicz functions, Filomat 27(5) (2013) 789–796. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Et and M. Işık, On α−dual spaces of generalized difference sequence spaces, Appl. Math. Lett. 25(10) (2012) 1486–1489. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Et and R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995) 377–386. [MathSciNet] [Google Scholar]
  12. M. Et and F. Nuray, Δm–statistical convergence, Indian J. Pure Appl. Math. 32(6) (2001) 961–969. [MathSciNet] [Google Scholar]
  13. A. A. Jagers, A note on Cesàro sequence spaces, Nieuw Arch. Wisk. 22(3) (1974) 113–124. [MathSciNet] [Google Scholar]
  14. M. Işik, On statistical convergence of generalized difference sequences, Soochow J. Math. 30(2) (2004) 197–205. [MathSciNet] [Google Scholar]
  15. M. Mursaleen ;R. Çolak and M. Et, Some geometric inequalities in a new Banach sequence space, J. Inequal. Appl. (2007) Art. ID 86757, 6 pp. [EDP Sciences] [Google Scholar]
  16. H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981) 169–176. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. N. Ng and P. Y. Lee, Cesàro sequence spaces of non-absolute type, Comment Math. 20 (1978) 429–433. [Google Scholar]
  18. P. N. Ng and P. Y. Lee, On the associate spaces of Cesàro sequence space, Nanta Math. 9(2) (1976) 168–170. [MathSciNet] [Google Scholar]
  19. J. S. Shiue, On the Cesàro sequence space, Tamkang J. Math. 1(1) (1970) 19–25. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.