Open Access
Issue
ITM Web Conf.
Volume 13, 2017
2nd International Conference on Computational Mathematics and Engineering Sciences (CMES2017)
Article Number 01016
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20171301016
Published online 02 October 2017
  1. R. Hirota, The Direct Method in Soliton Theory. Cambridge Univ. Press, (2004). [Google Scholar]
  2. M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge: Cambridge University Press, (1991). [CrossRef] [Google Scholar]
  3. A. M. Wazwaz, Travelling wave solutions for combined and double combined sinecosineGordon equations by the variable separated ODE method. Appl. Math. Comput, 177, 755–760 (2006). [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Dehghan, J. Manafian, A. Saadatmandi, The solution of the linear fractional partial differential equations using the homotopy analysis method. Z. Naturforsch, 65a, P 935-L 949 (2010). [Google Scholar]
  5. M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method. Num. Meth. Partial Differential Eq., 26, 448–479 (2010). [Google Scholar]
  6. J. H. He, Variational iteration method a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech, 34, 699–708 (1999). [Google Scholar]
  7. M. Dehghan, M. Tatari, Identifying an unknown function in a parabolic equation with overspecified data via He's variational iteration method. Chaos Solitons Fractals, 36, 157–166 (2008). [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Dehghan, J. Manafian, A. Saadatmandi, Application of semi-analytic methods for the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses, Math. Meth. Appl. Sci, 33, 1384–1398 (2010). [Google Scholar]
  9. Carlos Banquet Brango, The Symmetric Regularized-Long-Wave equation: Wellposedness and nonlinear stability. Physica, D(241), 125–133 (2012). [Google Scholar]
  10. C. Seyler, D. Fenstermacher, A symmetric regularized-long-wave equation. Phys. Fluids 27, 4–7 (1984). [CrossRef] [Google Scholar]
  11. G. K. Watugala, Sumudu Transform: A New Integral Transform to Solve Differantial Equations and Control Engineering Problems. International Journal of Mathematical Education in Science and Technology, 24, 35–43 (1993). [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Pandir, New exact solutions of the generalized Zakharov-Kuznetsov modified equal-width equation. Pramana journal of physics, 82(6), 949–964 (2014). [CrossRef] [Google Scholar]
  13. H. Bulut, H. M. Baskonus and F. B. M. Belgacem, The Analytical Solutions of Some Fractional Ordinary Differential Equations by Sumudu Transform Method. Abstract and Applied Analysis, (2013). [Google Scholar]
  14. A. M. Wazwaz, The tanh method: solitons and periodic solutions for Dodd-Bullough-Mikhailov and Tzitzeica- Dodd-Bullough equations. Chaos, Solitons and Fractals, 25, 55–56 (2005). [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. C.S. Liu, A new trial equation method and its applications. Communications in Theoretical Physics, 45(3), 395–397 (2006). [CrossRef] [Google Scholar]
  16. C.S. Liu, Trial Equation Method to Nonlinear Evolution Equations with Rank Inhomogeneous: Mathematical Discussions and Its Applications. Communications in Theoretical Physics, 45(2), 219–223. [Google Scholar]
  17. H. Bulut, Y. Pandir, H. M. Baskonus, Symmetrical Hyperbolic Fibonacci Function Solutions of Generalized Fisher Equation with Fractional Order. AIP Conf., 1558, 1914 (2013). [CrossRef] [Google Scholar]
  18. Y. Pandir, Y. Gurefe, U, Kadak, and E. Misirli, Classifications of exact solutions for some nonlinear partial differential equations with generalized evolution. Abstract and Applied Analysis, 2012, 16 pages, (2012). [CrossRef] [Google Scholar]
  19. Ryabov, P. N., Sinelshchikov, D. I., and Kochanov, M. B., Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations. Applied Mathematics and Computation, 218(7), 3965–3972 (2011). [CrossRef] [MathSciNet] [Google Scholar]
  20. Kudryashov, N. A., One method for finding exact solutions of nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 17(6), 2248–2253 (2012). [CrossRef] [MathSciNet] [Google Scholar]
  21. Lee J., and Sakthivel, R., Exact travelling wave solutions for some important nonlinear physical models. Pramana—Journal of Physics, 80(5), 757–769 (2013). [Google Scholar]
  22. H. Bulut, H.M. Baskonus, E. Cuvelek, On The Prototype Solutions of Symmetric Regularized Long Wave Equation by Generalized Kudryashov Method. Mathematics letters, 1(2), 10-16 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.