Open Access
Issue
ITM Web Conf.
Volume 15, 2017
II International Conference of Computational Methods in Engineering Science (CMES’17)
Article Number 02002
Number of page(s) 7
Section Computational And Artificial Intelligence
DOI https://doi.org/10.1051/itmconf/20171502002
Published online 15 December 2017
  1. R. M. Ruff, Ruff Figural Fluency Testprofessional manual (Psychological AssessmentResources Inc., Odessa, FL, 1988) [Google Scholar]
  2. P. S. Foster, J. B. Williamson, D. W. Harrison, Arch. Clin. Neuropsychol. 20, 427–434 (2005) [CrossRef] [Google Scholar]
  3. M. E. A. van Eersel, H. Joosten, J. Koerts, R. T. Gansevoort, J. P. J. Slaets, G. J. Izaks, PLoSOne. 10, e0121411 (2015) [Google Scholar]
  4. J. S. Kuiper, R. C. O. Voshaar, F. E. A. Verhoeven, S. U. Zuidema, N. Smidt, BMCPsychol. 5, 15 (2017) [Google Scholar]
  5. R. M. Ruff, R. H. Light, R. W. Evans, Dev.Neuropsychol. 3, 37–51 (1987) [CrossRef] [Google Scholar]
  6. G. J. Izaks, H. Joosten, J. Koerts, R. T. Gansevoort, J. P. Slaets, PLoS One. 6, e17045(2011) [Google Scholar]
  7. G. J. Demakis, D. W. Harrison, Psychol. Rep. 81, 443–448 (1997) [CrossRef] [Google Scholar]
  8. L. C. Berning, N. C. Weed, M. S. Aloia, Assessment. 5, 181–186 (1998) [CrossRef] [Google Scholar]
  9. M. Regard, E. Strauss, P. Knapp, Percept. Mot.Skills. 55, 839–844 (1982) [CrossRef] [Google Scholar]
  10. J. V Baldo, A. P. Shimamura, D. C. Delis, J. Kramer, E. Kaplan, J. Int. Neuropsychol. Soc. 7,586–596 (2001) [CrossRef] [Google Scholar]
  11. E. Łojek, J. Stańczak, Pol. standaryzacja i Norm.Pod. [The Ruff Fig. Fluen. Test. PolishStandarisation Norm. Warszawa Prac. TestówPsychol. Pol. Tow. Psychol. (2005) [Google Scholar]
  12. P. Krukow, M. Harciarek, J. Morylowska-Topolska, H. Karakuła-Juchnowicz, K. Jonak, Cogn. Neuropsychiatry. 22, 391–406 (2017) [CrossRef] [Google Scholar]
  13. S. L. Hicks, R. Sharma, A. N. Khan, C. M. Berna, A. Waldecker, K. Talbot, C. Kennard, M.R Turner, PLoS One. 8, 8–13 (2013) [Google Scholar]
  14. B. Poletti, L. Carelli, F. Solca, A. Lafronza, E.Pedroli, A. Faini, S. Zago, N. Ticozzi, A. Ciammola, C. Morelli, P. Meriggi, P. Cipresso, D. Lul?, A. C. Ludolph, G. Riva, et al., Neurol.Sci. 38, 595–603 (2017) [CrossRef] [Google Scholar]
  15. J. Keller, M. Gorges, H. T. Horn, H. E. A. Aho-Özhan, E. H. Pinkhardt, I. Uttner, J. Kassubek,A. C. Ludolph, D. Lulé, J. Neurol. 262, 1918–1926 (2015) [CrossRef] [Google Scholar]
  16. B. Gaymard, C. J. Ploner, S. Rivaud, A. I. Vermersch, C. Pierrot-Deseilligny, Exp. BrainRes. 123, 159–163 (1998) [CrossRef] [Google Scholar]
  17. J. J. S. Barton, A. Jama, J. A. Sharpe, Neurology. 45, 2065–2072 (1995) [CrossRef] [Google Scholar]
  18. P.-A. Fransson, M. Patel, M. Magnusson, S. Berg, P. Almbladh, S. Gomez, J. Vestib. Res. 18, 209–222 (2008) [Google Scholar]
  19. Q. Yang, T. Wang, N. Su, S. Xiao, Z. Kapoula, Age (Omaha). 35, 1287–1298 (2013) [CrossRef] [Google Scholar]
  20. C. Donaghy, R. Pinnock, S. Abrahams, C. Cardwell, O. Hardiman, V. Patterson, R. C. McGivern, J. M. Gibson, J. Neurol. 256, 420–426 (2009) [CrossRef] [Google Scholar]
  21. M. Gorges, H.-P. Müller, D. Lulé, K. DelTredici, J. Brettschneider, J. Keller, K. Pfandl, A. C. Ludolph, J. Kassubek, E. H. Pinkhardt, PLoS One. 10, e0142546 (2015) [CrossRef] [Google Scholar]
  22. A. L. Boxer, S. Garbutt, K. P. Rankin, J.Hellmuth, J. Neuhaus, B. L. Miller, S. G. Lisberger, J. Neurosci. 26, 6354–6363 (2006) [CrossRef] [Google Scholar]
  23. T. M. Merz, M. M. Bosch, D. Barthelmes, J. Pichler, U. Hefti, K. U. Schmitt, K. E. Bloch, O.D Schoch, T. Hess, A. J. Turk, U. Schwarz, Eur.J. Appl. Physiol. 113, 2025–2037 (2013) [CrossRef] [Google Scholar]
  24. A. Olsen, “The Tobii I-VT Fixation Filter:Algorithm description” (2012), (available at http://www.tobii.com/) [Google Scholar]
  25. K. Holmqvist, M. Nystrom, R. Andersson, R.Dewhurst, H. Jarodzka, J. van de Weijer, Eye Tracking. A comprehensive guide to methods and measures (Oxford University Press, 2011) [Google Scholar]
  26. H. K. Wong, J. Epps, Comput. MethodsPrograms Biomed. 137, 47–63 (2016) [CrossRef] [Google Scholar]
  27. M. G. Larson, Circulation. 117, 115–121 (2008) [CrossRef] [Google Scholar]
  28. I. Davidson, S. S. Ravi, 9th Eur. Conf. Princ.Pract. Knowl. Discov. Databases, PKDD 2005,59–70 (2005) [CrossRef] [Google Scholar]
  29. R. Rakotomalala, Proc. EGC. 2, 697–702 (2005) [Google Scholar]
  30. M. A. Wong, J. Am. Stat. Assoc. 77 (380), 841–847 (1982) [CrossRef] [Google Scholar]
  31. J. Poulsen, A. French, J. Forensic Sci. 56, 297–301 (1996) [Google Scholar]
  32. A. Shmilovici, in Data Mining and KnowledgeDiscovery Handbook, O. Maimon, L. Rokach, Eds. (Springer New York, Second Edi., 2010),pp. 231–247 [Google Scholar]
  33. T. M. Mitchell, others, Machine learning.McGraw Hill Ser. Comput. Sci. (1997), pp. I-XVII [Google Scholar]
  34. L. Breiman, Mach. Learn. 24, 123–140 (1996) [Google Scholar]
  35. L. Breiman, Mach. Learn. 45, 5–32 (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.