Open Access
Issue
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 01005
Number of page(s) 11
Section Algebra
DOI https://doi.org/10.1051/itmconf/20182001005
Published online 12 October 2018
  1. Carra’-Ferro, G. A resultant theory for systems of linear PDEs. In Proc. of Modern Group Analysis, 1994. [Google Scholar]
  2. Carra’-Ferro, G. A resultant theory for the systems of two ordinary algebraic differential equations. AAECC 8/6, 539–560, 1997. [CrossRef] [Google Scholar]
  3. Chardin, M. Differential resultants and subresultants. In Proc. Fundamentals of Computation Theory 1991. In LNCS Vol. 529, Springer-Verlag, 1991. [Google Scholar]
  4. Collins, G.E. The calculation of multivariate polynomial resultants. J.ACM 18/4, 515– 532, 1971. [CrossRef] [Google Scholar]
  5. Cox, D., Little, J., O’Shea, D. Using Algebraic Geometry, Springer, 1998. [Google Scholar]
  6. Gelfand, I., Kapranov, M., Zelevinsky, A. Discriminants, Resultants and Multidimensional Determinants, Birkhauser, Boston, 1994. [CrossRef] [Google Scholar]
  7. Kaplansky, I. An Introduction to Differential Algebra, Hermann, 1957. [Google Scholar]
  8. Kolchin, E.R. Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ODEs. Ann. of Math. 49, 1–42, 1948. [CrossRef] [Google Scholar]
  9. Kolchin, E.R. Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ODEs. Bull. Amer. Math. Soc. 54, 927–932, 1948. [CrossRef] [Google Scholar]
  10. Macaulay, F.S. The Algebraic Theory of Modular Systems, 1916. Reprinted in 1994 by Cambridge Univ. Press. [Google Scholar]
  11. McCallum, S. Factors of iterated resultants and discriminants. J.Symb.Comp. 27, 367– 385, 1999. [CrossRef] [Google Scholar]
  12. McCallum, S., Winkler, F. Resultants: Algebraic and Differential. Techn.Rep. RISC- 18-08, J.Kepler University, Linz, Austria, 2018. [Google Scholar]
  13. Ritt, J. F. Differential Equations from the Algebraic Standpoint. AMS Coll. Publ. Vol. 14, New York, 1932. [Google Scholar]
  14. Rueda, S., Sendra, J.R. Linear complete differential resultants and the implicitization of linear DPPEs. J.Symbolic Computation 45/3, 324–341, 2010. [CrossRef] [Google Scholar]
  15. Sturmfels, B. Introduction to resultants. In Applications of Computational Algebraic Geometry. Lecture Notes of the AMS, Short Course Series, 128–142, AMS, 1996. [Google Scholar]
  16. van der Waerden, B.L. Modern Algebra, Vol. II Ungar, New York, 1950. [Google Scholar]
  17. Zhang, Z.-Y., Yuan, C.-M., Gao, X.-S. Matrix formulae of differential resultant for first order generic ordinary differential polynomials. Computer Mathematics, R. Feng et al. (eds.), 479–503, 2014. [Google Scholar]
  18. Zwillinger, D. Handbook of Differential Equations Third Edn. Academic Press, 1998. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.