Open Access
Issue
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 01007
Number of page(s) 6
Section Algebra
DOI https://doi.org/10.1051/itmconf/20182001007
Published online 12 October 2018
  1. G. de Dominicis and M. Kreuzer, Kähler differentials for points in Pn, J. Pure Appl. Alg. 141, 153–173 (1999). [CrossRef] [Google Scholar]
  2. E. Guardo, M. Kreuzer, T. N. K. Linh, and L.N. Long, Kähler differentials for fat point schemes in P1 × P1, Submitted (2018). [Google Scholar]
  3. E. Guardo and A. Van Tuyl, Fat Points in P1 × P1 and their Hilbert functions, Canad. J. Math. 56, no. 4, 716–741 (2004). [CrossRef] [Google Scholar]
  4. M. Kreuzer, T. N. K. Linh, and L. N. Long, Kähler differentials and Kähler differents for fat point schemes, J. Pure Appl. Algebra 219, 4479–4509 (2015). [CrossRef] [Google Scholar]
  5. M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, (Springer Verlag, Heildelberg, 2000). [CrossRef] [Google Scholar]
  6. E. Kunz, Kähler Differentials (Adv. Lectures Math., Wieweg Verlag, Braunschweig, 1986). [CrossRef] [Google Scholar]
  7. H. Matsumura, Commutative Ring Theory (Cambridge University Press, Cambrige, 1986). [Google Scholar]
  8. J. Sidman and A. Van Tuyl, Multigraded regularity: Syzygies and fat points, Beiträge zur Algebra und Geometrie 47, 1–22 (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.