Open Access
Issue
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 02005
Number of page(s) 21
Section Numerical and Applied Analysis
DOI https://doi.org/10.1051/itmconf/20182002005
Published online 12 October 2018
  1. B. T. Anh, Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bulletin des Sciences Mathematiques. 138, 270–292 (2014). [CrossRef] [Google Scholar]
  2. B. T. Anh, The weighted norm inequalities for Riesz transforms of magnetic Schrödinger operators, Differential Integral Equations. 23, 811–826 (2010). [Google Scholar]
  3. B. T. Anh and D. X. Thinh, Boundedness of singular integrals and their commutators with BMO functions on Hardy spaces, Adv. Diff. Eq. 18, 459–494 (2013). [Google Scholar]
  4. B. Bongioanni, E. Harboure, and O. Salinas, Riesz transform related to Schrödinger operators acting on BMO type spaces, J. Math. Anal. Appl. 357, 115–131 (2009). [CrossRef] [Google Scholar]
  5. J. Cao, D. C. Chang, D. Yang, and S. Yang, textitBoundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces, Commun. Pure Appl. Anal. 13, 1435–1463 (2014). [CrossRef] [Google Scholar]
  6. J. Cao, D. C. Chang, D. Yang, and S. Yang, Estimates for second-order Riesz transforms associated with magnetic Schrödinger operators on Musielak-Orlicz-Hardy spaces, Appl. Anal. 93, 2519–2545 (2014). [CrossRef] [Google Scholar]
  7. T. Coulhon and X. T. Duong, Riesz transforms for 1 ≤ p ≤ 2, Trans. Amer. Math. Soc. 351, 1151–1169 (1999). [CrossRef] [Google Scholar]
  8. J. Dong and Y. Liu, The higher order Riesz transform and BMO space type associated to Schrödinger operator, Math.Nachr. 285, 1–11 (2011). [Google Scholar]
  9. G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes, 28, Princeton Univ. Press, Princeton, 1982. [Google Scholar]
  10. D. Gilberg and N. Trudinger, Elliptic partial differential equations of second order, Second Ed. Springer Verlag, 1983. [Google Scholar]
  11. L. Hömander, Hypoelliptic second-order differential equations, Acta Math. 119, 147–171 (1967). [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Liu and J. Dong, The Higher Order Riesz Transform and BMO Type Space Associated with Schrödinger Operators on Stratified Lie Groups, Hindawi Publishing Corporation, Journal of Function Spaces and Applications. Vol 2013, Article ID 483951, 13 pages. [Google Scholar]
  13. Y. Liu, L. Wang, and J. Dong, Commutators of Higher Order Riesz Transform Associated with Schrödinger Operators, Hindawi Publishing Corporation, Journal of Function Spaces and Applications, Article ID 842375 (2013). [Google Scholar]
  14. Y. Liu, The Weighted Estimates of the Schrödinger Operators on the Nilpotent Lie Group, Journal of Mathematical Research & Exposition. 30, No.6, 1023–1031 (2010). [Google Scholar]
  15. G. Lu and R. L. Wheeden, High order representation formulas and embedding theorems on stratified groups and generalizations, Studia Mathematica, 142, no.2, 101–133 (2000). [CrossRef] [Google Scholar]
  16. H. Q. Li, Estimations Lp des opérateurs de Schrödinger sur les groupes nilpotents, J. Funct. Anal. 161, 152–218 (1999). [CrossRef] [Google Scholar]
  17. F. Ly, Second order Riesz transforms associated to the Schrödinger operator for p ≤ 1, J. Math. Anal. Appl. 410, 391–402 (2014). [CrossRef] [Google Scholar]
  18. M. Morvidone, Weighted BMOϕ spaces and the Hilbert transform, Rev. Un. Mat. Argentina. 44, 1–16 (2003). [Google Scholar]
  19. Z. Shen, Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier 45, 513-546 (1995). [CrossRef] [Google Scholar]
  20. E. M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993. [Google Scholar]
  21. D. Yang and S. Yang, Second-order Riesz transforms and maximal inequalities associated with magnetic Schrödinger operators, Canad. Math. Bull. 58, 432–448 (2015). [CrossRef] [Google Scholar]
  22. D. Yang and Y. Zhou, Localized Hardy spaces H1 related to admissible functions on RD-spaces and applications to Schrodinger operators, Trans. Amer. Math. Soc. 363, 1197–1239 (2011). [CrossRef] [Google Scholar]
  23. D. Yang, D. Yang, and Y. Zhou, Localized BMO and BLO spaces on RD-spaces and applications to Schrödinger operators, Commun. Pure Appl. Anal. 9, 779–812 (2010). [CrossRef] [Google Scholar]
  24. D. Yang, D. Yang, and Y. Zhou, Localized Morrey-Campanato Spaces on Metric Measure Spaces and Applications to Schrödinger Operators, Nagoya Math. J.. 198, 77–119 (2010). [CrossRef] [Google Scholar]
  25. J. Zhong, Harmonic analysis for some Schrödinger type operators, Ph.D.Thesis, Princeton University, 1993. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.