Open Access
Issue
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 02007
Number of page(s) 9
Section Numerical and Applied Analysis
DOI https://doi.org/10.1051/itmconf/20182002007
Published online 12 October 2018
  1. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives (Theory and Applications, Gordon and Breach Science, Naukai Tekhnika, Minsk, 1987). [Google Scholar]
  2. I. Podlubny, Fractional differential equations (Academic Press, London, 1999). [Google Scholar]
  3. K. Diethelm, The analysis of fractional differential equation (Springer, Berlin, 2010). [CrossRef] [Google Scholar]
  4. J.A.T. Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal., Vol. 13, 329-334 (2010). [Google Scholar]
  5. D.A. Murio, Time fractional IHCP with Caputo fractional derivatives, Comput. Math. with Appl., Vol. 56, 2371- 2381 (2008). [CrossRef] [Google Scholar]
  6. K.B. Oldham, J. Spanier, A general solution of the diffusion equation for semifinite geometries, J. Math. Anal. Appl., Vol. 39, 655 - 669 (1972). [CrossRef] [Google Scholar]
  7. D.A. Murio, Stable numerical solution of a fractional-diffusion inverse heat conduction problem, Comput. Math. Appl., Vol. 53, 1492 - 1501 (2007). [CrossRef] [Google Scholar]
  8. W. Cheng, C.L. Fu, Z. Qian, Two regularization methods for a spherically symmetric inverse heat conduction problem, Comput. Math. Appl., Vol. 56, 1138 - 1145 (2008). [CrossRef] [MathSciNet] [Google Scholar]
  9. G.H. Zheng, T. Wei, Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation, J. Comput. Appl. Math., Vol. 233, 2631 - 2640 (2010). [CrossRef] [Google Scholar]
  10. G.H. Zheng, T. Wei, Spectral regularization method for the time fractional inverse advectiondispersion equation, Math. Comput. Simul., Vol 81, 37 - 51 (2010). [CrossRef] [Google Scholar]
  11. X. Xiong, H. Guo, X. Liu, An inverse problem for a fractional diffusion equation, J. Comput. Appl. Math., Vol. 236, 4474 - 4484 (2012). [CrossRef] [Google Scholar]
  12. X. Xiong, Q. Zhou, Y.C. Hon, An inverse problem for fractional diffusion equation in 2- dimensional case: Stability analysis and regularization, J. Math. Anal. Appl., Vol. 393, 185 - 199 (2012). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.