Open Access
This article has a note: [https://doi.org/10.1051/itmconf/20182002015]


Issue
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 02012
Number of page(s) 16
Section Numerical and Applied Analysis
DOI https://doi.org/10.1051/itmconf/20182002012
Published online 12 October 2018
  1. Large synoptic survey telescope. https://www.lsst.org/. [Google Scholar]
  2. H. Altwaijry, E. Trulls, J. Hays, P. Fua, and S. Belongie. Learning to match aerial images with deep attentive architectures. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3539–3547, June 2016. [CrossRef] [Google Scholar]
  3. H. Zhao and F. Magoulès, “A review on the prediction of building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3586–3592, 2012. [CrossRef] [Google Scholar]
  4. Apache. Apache hadoop. [Online]. Available: http://hadoop.apache.org/. [Google Scholar]
  5. Apache. Apache mahout. [Online]. Available: http://mahout.apache.org/. [Google Scholar]
  6. Apache. Apache storm. [Online]. Available: http://sotrm.apache.org/. [Google Scholar]
  7. AWS. Aws. [Online]. Available: https://aws.amazon.com/tw/. [Google Scholar]
  8. K. J. Bowers, B. J. Albright, L. Yin, B. Bergen, and T. J. T. Kwan. Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Physics of Plasmas, 15(5):7, 2008. [Google Scholar]
  9. C. O. Chen, Y. Q. Zhuo, C. C. Yeh, C. M. Lin, and S. W. Liao. Machine learning-based configuration parameter tuning on hadoop system. In 2015 IEEE International Congress on Big Data, pages 386–392, June 2015. [CrossRef] [Google Scholar]
  10. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Commun. ACM, 51(1):107–113, Jan. 2008. [CrossRef] [Google Scholar]
  11. “Apache Mahout.” http://mahout.apache.org/. [Google Scholar]
  12. “Apache Spark.” http://spark.apache.org/. [Google Scholar]
  13. K. Grolinger, A. L’Heureux, M. A. M. Capretz, and L. Seewald, “Energy forecasting for event venues: Big Data and prediction accuracy,” Energy and Buildings, vol. 112, pp. 222–233, 2016. [CrossRef] [Google Scholar]
  14. Oxdata, “H2O.” http://www.h2o.ai/2016. [Google Scholar]
  15. V. N. Vapnik, Estimation of Dependences Based on Empirical Data, New York: Springer-Verlag. 1982. [Google Scholar]
  16. L. Bottou and V. Vapnik, “Local learning algorithms,” Neural Computation, vol. 4, no. 6, pp. 888-900, 1992. [CrossRef] [Google Scholar]
  17. I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector machines: Fast SVM training on very large data sets,” Journal of Machine Learning Research, pp. 363–392, 2005. [Google Scholar]
  18. F. Niu, B. Recht, R. Christopher, and S. J. Wright, “Hogwild!: A lockfree approach to parallelizing stochastic gradient descent,” Advances in Neural Information Processing Systems, pp. 693–701, 2011. [Google Scholar]
  19. H. Zhang, G. Chen, and B. Ooi, “In-memory Big Data management and processing: A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 7, pp. 1920–1948, 2015. [CrossRef] [Google Scholar]
  20. X.-W. Chen and X. Lin, “Big Data deep learning: challenges and perspectives,” IEEE Access, vol. 2, pp. 514–525, 2014. [CrossRef] [Google Scholar]
  21. M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, “Deep learning applications and challenges in big data analytics,” Journal of Big Data, vol. 2, no. 1, pp. 1–21, 2015. [CrossRef] [Google Scholar]
  22. R. K. Jain, K. M. Smith, P. J. Culligan, and J. E. Taylor, “Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy,” Applied Energy, vol. 123, pp. 168–178, 2014. [CrossRef] [Google Scholar]
  23. L. Suganthi and A. Samuel, “Energy Models for Demand ForecastingA Review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 2, pp. 1223–1240, 2012. [CrossRef] [Google Scholar]
  24. A. S. Ahmad, M. Y. Hassan, M. P. Abdullah, H. A. Rahman, F. Hussin, H. Abdullah, and R. Saidur, “A review on applications of ANN and SVM for building electrical energy consumption forecasting,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 102–109, 2014. [CrossRef] [Google Scholar]
  25. H. C. Jung, J. S. Kim, and H. Heo, “Prediction of building energy consumption using an improved real coded genetic algorithm based least squares support vector machine approach,” Energy and Buildings, vol. 90, pp. 76–84, 2015. [CrossRef] [Google Scholar]
  26. Lee, W., Stolfo, S.J., Chan, P.K., Eskin, E., Fan, W., Miller, M., Zhang, J.: Realtime data mining-based intrusion detection. In: DARPA Information Survivability Conference and Exposition II, DISCEX 2001, vol. 1, pp. 89–100. IEEE Press, New York (2001) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.