Open Access
Issue
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 03001
Number of page(s) 16
Section Statistics
DOI https://doi.org/10.1051/itmconf/20182003001
Published online 12 October 2018
  1. Kodlin D., A new response time distribution (Biometrics) 2, 227-239 (1967). [Google Scholar]
  2. Bain L. J., Analysis for the linear failure-rate life-testing distribution (Technometrics) 16, 551-559 (1974). [Google Scholar]
  3. Salem S. A., Bayesian estimation of a non-linear failure rate from censored samples type II (Microelectronics and Reliability) 32, 1385-1388 (1992). [Google Scholar]
  4. Hamada M. S., Wilson A. G., Martz H. F., Reese C. S., Bayesian reliability (Springer, 2008). [CrossRef] [Google Scholar]
  5. Moore D. F., Applied survival analysis using R (Springer, 2016). [CrossRef] [Google Scholar]
  6. Kroese D. P., Porotsky S., Rubinstein R. Y., The cross-entropy method for continuous multi-extremal optimization (Methodology and Computing in Applied Probability) 8, 383-407 (2006). [Google Scholar]
  7. Rubinstein R. Y., Kroese D. P., The cross-entropy method: a unified approach to combinatorial optimization, Monte Carlo simulation and machine learning (Springer-Verlag, New York, 2004). [Google Scholar]
  8. Zio E., The Monte Carlo simulation method for system reliability and risk analysis (Springer, 2013). [CrossRef] [Google Scholar]
  9. Brooks S., Gelman A., Jones G., Meng X. L., Handbook of Markov Chain Monte Carlo (CRC Press, 2011). [CrossRef] [Google Scholar]
  10. Canfield R., A Bayesian approach to reliability estimation using a loss function (IEEE Transactions on Reliability) 19, 13-16 (1970). [Google Scholar]
  11. Jiang H., Xie M., Tang L. C., Markov chain Monte Carlo methods for parameter estimation of the modified weibull distribution (Journal of Applied Statistics) 35(6), 647-658 (2008). [Google Scholar]
  12. Kundu D., Howlader H., Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data. (Computational Statistics and Data Analysis) 54(6), 1547-1558 (2010). [CrossRef] [Google Scholar]
  13. Robert C. P., Casella G., Introducing Monte Carlo methods with R (Springer, 2010). [CrossRef] [Google Scholar]
  14. Blischke W. R., Karim M. R., Murthy D. P., Warranty data collection and analysis (Springer, 2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.