Open Access
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 03003
Number of page(s) 22
Section Statistics
Published online 12 October 2018
  1. Aigner, D.J. and Lovell, C.A.K.. Formulation and estimation of stochastic frontier production function model. Econometrics 12: 21-37 (1977). [CrossRef] [MathSciNet] [Google Scholar]
  2. Arellano-Valle, R. B., Castro, L. M. and Loschi, R. H.. Change Point Detection in the Skew-Normal Model Parameters. Communications in Statistics-Theory and Methods 42: 603-618 (2013). [CrossRef] [Google Scholar]
  3. Arnold, B.C. and Lin, G.D.. Characterizations of the Skew-normal and Generalized Chi Distributions. Sankhyā: The Indian Journal of Stat. 66: 593-606 (2004). [Google Scholar]
  4. Azzalini, A.. A class of distribution which includes the normal ones. Scan. J. Statist. 12: 171-178 (1985). [Google Scholar]
  5. Azzalini, A.. The Skew-normal Distribution and Related Multivariate Families. Scan. J. Statist. 32: 159-188 (2005). [Google Scholar]
  6. Azzalini, A. and Capitanio, A.. Statistical applications of the multivariate skewnormal distribution. J. Roy. Statist. Soc. B 61: 579-602 (1999). [Google Scholar]
  7. Azzalini, A. and Dalla Valle, A.. The multivariate skew-normal distribution. Biometrika 83: 715-726 (1996). [CrossRef] [Google Scholar]
  8. Figueiredo, F. and Gomes, M.I.. The Skew-Normal Distribution in SPC. REVSTAT – Statistical Journal 11: 83-104 (2013). [Google Scholar]
  9. Gupta, A.K., Nguyen, T.T. and Sanqui, J.T.. Characterization of the Skew- Normal Distribution. Ann. Inst. Statist. Math. 56: 351-360 (2004). [CrossRef] [Google Scholar]
  10. Gupta, R.C. and Brown, N.. Reliability Studies of the Skew Normal Distribution and Its Application to a Strength-Stress Model. Commun. Statist.-Theory Meth. 11: 2427-2445 (2001). [CrossRef] [Google Scholar]
  11. Henze, N.. A probabilistic representation of the skew-normal distribution. Scand. J. Statist. 13: 271-275 (1986). [Google Scholar]
  12. Ngunkeng, G. and Ning,W.. Information Approach for the Change-Point Detection in the Skew Normal Distribution and Its Applications. Sequential Analysis, 33: 475-490 (2014). [CrossRef] [Google Scholar]
  13. O’Hagan, A. and Leonard, T.. Bayes estimation subject to uncertainly about parameter constraints, Biometrika, 63: 201-202 (1976). [CrossRef] [MathSciNet] [Google Scholar]
  14. Roberts, C.. A correlation model useful in the study of twins. Journal of the American Statistical Association. 61: 1184-1190 (1966). [CrossRef] [Google Scholar]
  15. Roberts, H.V.. Data Analysis for Managers with Minitab. (Scientific Press: Redwood City, CA, 1988). [Google Scholar]
  16. Thiuthad, P. and Pal, N.. On Point Estimation of the Location Parameter of a Skew-Normal Distribution. Submitted (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.