Open Access
Issue
ITM Web Conf.
Volume 22, 2018
The Third International Conference on Computational Mathematics and Engineering Sciences (CMES2018)
Article Number 01009
Number of page(s) 10
DOI https://doi.org/10.1051/itmconf/20182201009
Published online 17 October 2018
  1. K.J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford University Press, California (1958). [Google Scholar]
  2. S. Wang, X.Q. Yang and K.L. Teo, A unified gradient flow approach to constrained nonlinear optimization problems, Comput. Optim. Appl., 25, pp. 251-268, (2003). [CrossRef] [Google Scholar]
  3. L. Jin, L.-W. Zhang and X. Xiao, Two differential equation systems for equality-constrained optimization, Appl. Math. Comput., 190, pp. 1030-1039, (2007). [Google Scholar]
  4. V. Shikhman and O. Stein, Constrained optimization: projected gradient flows, J. Optim. Theory Appl., 140, pp. 117-130, (2009). [CrossRef] [Google Scholar]
  5. N. Özdemir and F. Evirgen, A dynamic system approach to quadratic programming problems with penalty method, Bull. Malays. Math. Sci. Soc., 33, pp. 79-91, (2010). [Google Scholar]
  6. I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999). [Google Scholar]
  7. D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional calculus: models and numerical methods, Series on complexity, nonlinearity and chaos, World Scientific, Singapore, (2012) [Google Scholar]
  8. M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1, pp. 73-85, (2015). [Google Scholar]
  9. M. Caputo and M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2, pp. 1-11, (2016). [CrossRef] [Google Scholar]
  10. J. Losada and J.J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1, pp. 87-92, (2016). [Google Scholar]
  11. A. Atangana, B.S.T. Alkahtani, New model of groundwater flowing within a confine aquifer: Application of Caputo-Fabrizio derivative, Arab. J. Geosci., 9, pp. 1-8, (2016) [Google Scholar]
  12. J. Singh, D. Kumar, J.J. Nieto, Analysis of an El Nino-Southern Oscillation model with a new fractional derivative, Chaos Solitons Fractals, 99, pp. 109-115, (2017). [Google Scholar]
  13. I. Koca, A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Therm. Sci., 21, pp. 2299-2305, (2017). [CrossRef] [Google Scholar]
  14. J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions, Therm. Sci., 21, pp. 827-839, (2017). [CrossRef] [Google Scholar]
  15. M.S. Aydogan, D. Baleanu, A. Mousalou, and et al., On high order fractional integrodifferential equations including the Caputo-Fabrizio derivative, Bound Value Probl., 2018:90, pp. 1-15, (2018). [CrossRef] [Google Scholar]
  16. M. Yavuz, N. Özdemir, A different approach to the European option pricing model with new fractional operator. Mathematical Modelling of Natural Phenomena, 13(1), pp. 1-12, (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  17. S. Ullah, M. Altaf Khan and M. Farooq, A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133: 237, (2018). [CrossRef] [Google Scholar]
  18. N.A. Asif, Z. Hammouch, M.B. Riaz and et al., Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133: 272, (2018). [CrossRef] [Google Scholar]
  19. M.A. Dokuyucu, E. Celik, H. Bulut and et al., Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus 133: 92, (2018). [CrossRef] [Google Scholar]
  20. M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular kernel, Fractal and Fractional, 2(1), 3, (2018). [Google Scholar]
  21. A. Yokus, Numerical solutions of time fractional Korteweg-de vries equation and its stability analysis, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(1), pp. 353-361, (2019). [Google Scholar]
  22. A. Yokus, D. Kaya, Numerical and exact solutions for time fractional Burgers’ equation, J. Nonlinear Sci. Appl., 10(7), pp. 3419-3428, (2017). [Google Scholar]
  23. D.G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Third Edition, Springer, New York (2008). [Google Scholar]
  24. J.H. He, Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul., 2, pp. 235-236, (1997). [CrossRef] [Google Scholar]
  25. F. Evirgen and N. Özdemir, Multistage Adomain decomposition method for solving NLP problems over a nonlinear fractional dynamical system. J. Comput. Nonlinear Dyn., 6, 021003 (2011). [CrossRef] [Google Scholar]
  26. F. Evirgen and N. Özdemir, A fractional order dynamical trajectory approach for optimization problem with HPM, Fractional Dynamics and Control, Springer, Eds. Baleanu, D., Machado, J.A.T., Luo, A.C.J., pp. 145-155 (2012). [CrossRef] [Google Scholar]
  27. F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, An International Journal of Optimization and Control:Theories & Applications (IJOCTA), 6(2), pp. 75-83, (2016). [CrossRef] [Google Scholar]
  28. F. Evirgen, Conformable fractional gradient based dynamic system for constrained optimization problem, Acta Physica Polonica A, 132 (3), 1066-1069, (2017). [CrossRef] [Google Scholar]
  29. B. Batiha, M.S.M. Noorani, I. Hashim and E.S. Ismail, The multistage variational iteration method for a class of nonlinear system of ODEs, Phys. Scr., 76, pp. 388-392, (2007). [CrossRef] [Google Scholar]
  30. K. Schittkowski, More test examples for nonlinear programming codes, Springer, Berlin, (1987). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.