Open Access
Issue
ITM Web Conf.
Volume 22, 2018
The Third International Conference on Computational Mathematics and Engineering Sciences (CMES2018)
Article Number 01008
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20182201008
Published online 17 October 2018
  1. T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. Journal of Nonlinear Sciences and Applications, 10(2017), pp. 1098-1107, (2017). [CrossRef] [Google Scholar]
  2. D. Avci, B.B. Iskender Eroglu, N. Ozdemir, Conformable heat equation on a radial symmetric plate. Thermal Science, 21(2), pp. 819-826, (2017). [CrossRef] [Google Scholar]
  3. E. Bonyah, A. Atangana, M.A. Khan, Modeling the spread of computer virus via Caputo fractional derivative and the beta-derivative. Asia Pacific Journal on Computational Engineering, 4(1), p. 1, (2017). [CrossRef] [Google Scholar]
  4. Y. Çenesiz, D. Baleanu, A. Kurt, O. Tasbozan, New exact solutions of Burgers’ type equations with conformable derivative. Waves in Random and Complex Media, 27(1), pp. 103-116, (2017). [CrossRef] [Google Scholar]
  5. F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM. An International Journal of Optimization and Control, 6(2), pp. 75-83, (2016). [Google Scholar]
  6. J.F. Gomez-Aguilar, H. Yépez-Martínez, J. Torres-Jiménez, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel. Advances in Difference Equations, 2017(1), p. 68, (2017). [CrossRef] [Google Scholar]
  7. J. Hristov, Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Thermal science, 21(2), pp. 827-839, (2017). [CrossRef] [Google Scholar]
  8. M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation. An International Journal of Optimization and Control:Theories & Applications (IJOCTA), 8(1), pp. 1-7, (2018). [CrossRef] [Google Scholar]
  9. M. Yavuz, N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations. Thermal Science, 22(2), pp. 185-194, (2018). [CrossRef] [Google Scholar]
  10. M. Yavuz, N. Ozdemir A different approach to the European option pricing model with new fractional operator. Mathematical Modelling of Natural Phenomena, 13(1), pp. 1-12, (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  11. M. Yavuz, N. Ozdemir, H.M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel. The European Physical Journal Plus, 133(6), p. 215, (2018). [CrossRef] [Google Scholar]
  12. N. Özdemir, M. Yavuz, Numerical Solution of Fractional Black-Scholes Equation by Using the Multivariate Padé Approximation. Acta Physica Polonica A, 132(3), pp. 1050-1053, (2017). [CrossRef] [Google Scholar]
  13. H. Bulut, T.A. Sulaiman, H.M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion. Optik, 163, pp. 1-7, (2018). [CrossRef] [Google Scholar]
  14. H.M, Baskonus, T. Mekkaoui, Z. Hammouch, H. Bulut, Active control of a chaotic fractional order economic system. Entropy, 17(8), pp. 5771-5783, (2015). [CrossRef] [Google Scholar]
  15. A. Esen, Y. Ucar, N. Yagmurlu, O. Tasbozan, A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations. Mathematical Modelling and Analysis, 18(2), pp. 260-273, (2013). [CrossRef] [Google Scholar]
  16. A. Yokus, H.M. Baskonus, T.A. Sulaiman, H. Bulut, Numerical simulation and solutions of the two-component second order KdV evolutionarysystem. Numerical Methods for Partial Differential Equations, 34(1), pp. 211-227, (2018). [CrossRef] [Google Scholar]
  17. D. Kaya, S. Gülbahar, A. Yokuş, M. Gülbahar, Solutions of the fractional combined KdV-mKdV equation with collocation method using radial basis function and their geometrical obstructions. Advances in Difference Equations, 2018(1), p. 77, (2018). [CrossRef] [Google Scholar]
  18. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), pp. 1-13, (2015). [Google Scholar]
  19. A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Science, 20(2), pp. 763-769, (2016). [CrossRef] [Google Scholar]
  20. N.A. Sheikh, F. Ali, M. Saqib, I. Khan, S.A.A. Jan, A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. The European Physical Journal Plus, 132(1), p. 54, (2017). [CrossRef] [Google Scholar]
  21. J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, M.G. López-López, V.M. Alvarado-Martínez, Atangana-Baleanu fractional derivative applied to electromagnetic waves in dielectric media. Journal of Electromagnetic Waves and Applications, 30(15), pp. 1937-1952, (2016). [CrossRef] [Google Scholar]
  22. A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. Journal of Engineering Mechanics, 143(5), p. D4016005, (2017). [CrossRef] [Google Scholar]
  23. M. Yavuz, N. Özdemir, European vanilla option pricing model of fractional order without singular kernel. Fractal and Fractional, 2(1), p. 3, (2018). [CrossRef] [Google Scholar]
  24. A. Atangana, B.S.T. Alkahtani, New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative. Arabian Journal of Geosciences, 9(1), p. 8, (2016). [CrossRef] [Google Scholar]
  25. J. Losada, J.J. Nieto, Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), pp. 87-92, (2015). [Google Scholar]
  26. D. Baleanu, B. Agheli, M.M. Al Qurashi, Fractional advection differential equation within Caputo and Caputo-Fabrizio derivatives. Advances in Mechanical Engineering, 8(12), p. 1687814016683305, (2016). [CrossRef] [Google Scholar]
  27. A. Ghorbani, Beyond Adomian polynomials: he polynomials. Chaos, Solitons & Fractals, 39(3), pp. 1486-1492, (2009). [CrossRef] [MathSciNet] [Google Scholar]
  28. A.K. Golmankhaneh, A.K. Golmankhaneh, D. Baleanu, On nonlinear fractional Klein-Gordon equation. Signal Processing, 91(2011), pp. 446-451, (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.