Open Access
ITM Web Conf.
Volume 22, 2018
The Third International Conference on Computational Mathematics and Engineering Sciences (CMES2018)
Article Number 01045
Number of page(s) 7
Published online 17 October 2018
  1. R. Hilfer, Applications of fractional calculus in physics. Applications of Fractional Calculus in Physics. Edited by HILFER R. Published by World Scientific Publishing Co. Pte. Ltd.,. ISBN# 9789812817747, (2000). [CrossRef] [Google Scholar]
  2. E. Bonyah, A. Atangana, M.A. Khan, Modeling the spread of computer virus via Caputo fractional derivative and the beta-derivative. Asia Pacific Journal on Computational Engineering, 4(1), p. 1. (2017). [CrossRef] [Google Scholar]
  3. H. Bulut, H.M. Baskonus, F.B.M. Belgacem, The analytical solution of some fractional ordinary differential equations by the Sumudu transform method. Abstract and Applied Analysis, (2013). [Google Scholar]
  4. H.M. Baskonus, T. Mekkaoui, Z. Hammouch, H. Bulut, Active control of a chaotic fractional order economic system. Entropy, 17(8), pp. 5771-5783, (2015). [CrossRef] [Google Scholar]
  5. M. Yavuz, N. Özdemir, New Numerical Techniques for Solving Fractional Partial Differential Equations in Conformable Sense. In: Ostalczyk P., Sankowski D., Nowakowski J. (eds) Non-Integer Order Calculus and its Applications. Lecture Notes in Electrical Engineering, vol 496. (2019), Springer, Cham [Google Scholar]
  6. M. Inc, M.T. Gencoglu, A. Akgül, Application of Extended Adomian Decomposition Method and Extended Variational Iteration Method to Hirota-Satsuma Coupled KdV Equation. Journal of Advanced Physics, 6(2), pp. 216-222, (2017). [CrossRef] [Google Scholar]
  7. M. Yavuz, N. Ozdemir, H.M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel. The European Physical Journal Plus, 133(6), pp. 215, (2018). [Google Scholar]
  8. M.G. Sakar, F. Erdogan, The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian’s decomposition method. Applied Mathematical Modelling, 37(20-21), pp. 8876-8885, (2013). [CrossRef] [Google Scholar]
  9. M. Yavuz, N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations. Thermal Science, 22(1), pp. 185-194, (2018). [Google Scholar]
  10. N. Özdemir, M. Yavuz, Numerical Solution of Fractional Black-Scholes Equation by Using the Multivariate Padé Approximation. Acta Physica Polonica A, 132(3), 1050-1053, (2017). [CrossRef] [Google Scholar]
  11. J. Hristov, Approximate solutions to fractional subdiffusion equations. The European Physical Journal Special Topics, 193(1), pp. 229-243, (2011). [CrossRef] [EDP Sciences] [Google Scholar]
  12. A. Yokuş, Numerical Solutions of Time Fractional Korteweg--de Vries Equation and Its Stability Analysis. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics. 68(1), pp. 353-361, (2019). [Google Scholar]
  13. A. Yokus, D. Kaya, Numerical and exact solutions for time fractional Burgers’ equation. Journal of Nonlinear Sciences and Applications, 10(7), pp. 3419-3428, (2017). [Google Scholar]
  14. R. Khalil, M. Al Horani, A. Yousef, M. Sababhehet, A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, p. 65-70, (2014). [CrossRef] [Google Scholar]
  15. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative. Open Mathematics, 13(1), pp. 889-898, (2015). [CrossRef] [Google Scholar]
  16. T. Abdeljawad, On conformable fractional calculus. Journal of computational and Applied Mathematics, 279, pp. 57-66, (2015). [CrossRef] [Google Scholar]
  17. D. Avci, B.B. Iskender Eroglu, N. Ozdemir, Conformable Heat Equation on a Radial Symmetric Plate. Thermal Science, 21(2), pp. 819-826, (2017). [Google Scholar]
  18. F. Evirgen, Conformable fractional gradient based dynamic system for constrained optimization problem. Acta Physica Polonica A, 132(3), pp. 1066-1069, (2017). [CrossRef] [Google Scholar]
  19. M. Yavuz, N. Özdemir, A different approach to the European option pricing model with new fractional operator. Mathematical Modelling of Natural Phenomena, 13(1), pp. 1-12, (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  20. M. Yavuz, Novel solution methods for initial boundary value problems of fractional order with conformable differentiation. An International Journal of Optimization and Control, 8(1), pp. 1-7, (2018). [Google Scholar]
  21. O.S. Iyiola, G.O. Ojo, On the analytical solution of Fornberg-Whitham equation with the new fractional derivative. Pramana, 85(4), pp. 567-575, (2015). [CrossRef] [Google Scholar]
  22. S.-J. Liao, An approximate solution technique not depending on small parameters:A special example. International Journal of Non-Linear Mechanics, 30(3), pp. 371-380, (1995). [CrossRef] [Google Scholar]
  23. A. Tveito, R. Winther, Introduction to partial differential equations: a computational approach. Vol. 29, (Springer Science & Business Media 2004). [Google Scholar]
  24. N.H. Asmar, Partial differential equations with Fourier series and boundary value problems. (Courier Dover Publications 2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.