Open Access
Issue
ITM Web Conf.
Volume 22, 2018
The Third International Conference on Computational Mathematics and Engineering Sciences (CMES2018)
Article Number 01060
Number of page(s) 9
DOI https://doi.org/10.1051/itmconf/20182201060
Published online 17 October 2018
  1. Aytar S., Rough statistical convergence, Numer. Funct. Anal. Optim. 29(3-4), 291-303 (2008). [CrossRef] [Google Scholar]
  2. Aytar S., The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optim. 29(3-4), 283-290 (2008). [CrossRef] [Google Scholar]
  3. Esi, A., On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures 1(2), 16-25 (2014). [Google Scholar]
  4. Esi, A. and Catalbas, M. N., Almost convergence of triple sequences, Global Journal of Mathematical Analysis 2(1), 6-10 (2014). [Google Scholar]
  5. Esi, A. and Savas, E., On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9(5), 2529-2534 (2015). [Google Scholar]
  6. Esi, A.; Araci, S. and Acikgoz, M., Statistical convergence of Bernstein operators, Appl. Math. Inf. Sci. 10(6), 2083-2086 (2016). [CrossRef] [Google Scholar]
  7. Datta, A. J.; Esi, A. and Tripathy, B. C., Statistically convergent triple sequence spaces defined by Orlicz function, J. Math. Anal. 4(2), 16-22 (2013). [Google Scholar]
  8. Debnath, S.; Sarma, B. and Das, B. C., Some generalized triple sequence spaces of real numbers, J. Nonlinear Anal. Optim. 6(1), 71-79 (2015). [Google Scholar]
  9. Dundar, E.; Cakan, C., Rough I-convergence, Demonstr. Math. 47(3), 638-651 (2014). [Google Scholar]
  10. Phu, H. X., Rough convergence in normed linear spaces, Numer. Funct. Anal. Optim. 22(1-2), 199-222 (2001). [CrossRef] [Google Scholar]
  11. Phu, H. X., Rough continuity of linear operators, Numer. Funct. Anal. Optim. 23(1-2), 139-146 (2002). [CrossRef] [Google Scholar]
  12. Phu, H. X., Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz. 24(3-4), 285-301 (2003). [CrossRef] [Google Scholar]
  13. Sahiner, A.; Gurdal, M. and Duden, F. K., Triple sequences and their statistical convergence, Selcuk J. Appl. Math. 8(2), 49-55 (2007). [Google Scholar]
  14. Sahiner, A.; Tripathy, B. C., Some I-related properties of triple sequences, Selcuk J. Appl. Math. 9(2), 9-18 (2008). [Google Scholar]
  15. Subramanian, N. and Esi, A., The generalized tripled difference of χ3 sequence spaces, Global Journal of Mathematical Analysis 3(2), 54-60 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.