Open Access
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
Article Number 01003
Number of page(s) 7
Section Communications-Systems-Signal Processing
Published online 01 February 2019
  1. A. Xu, S. Haykin, R. J. Racine, Multiple window time-frequency distribution and coherence of EEG using slepian sequences and hermite function. IEEE Transactions of Biomedical Engineering, 46 (1999) [Google Scholar]
  2. J. G. Proakis, Ch. M. Rader, F. L. Ling, Ch. L. Nikias, M. Moonen, J. K. Proudler. Algorithms for Statistical Signal Processing. (Prentice Hall, 2002) [Google Scholar]
  3. D. Wang, S. Shilong, W. Tse. A general sequential Monte Carlo method based optimal wavelet filter: A Bayesian approach for extracting bearing fault features. Mechanical Systems and Signal Processing, 52 (2015) [Google Scholar]
  4. W. Jiang, S. Mahadevan, Wavelet spectrum analysis approach to model validation of dynamic systems. Mechanical Systems and Signal Processing, 25 (2011) [Google Scholar]
  5. A. N. Berdiev, Ch-P. Chang, Business cycle synchronization in Asia-Pacific: New evidence from wavelet analysis. Journal of Asia Econ., 37 (2015) [Google Scholar]
  6. Ch. Aloui, B. Hkiri, D. K. Nguyen. Real growth co-movement and business cycle synchronization in the GCV countries: Evidence from time-frequency analysis. Economic modelling, 52 (2016) [Google Scholar]
  7. J. Fidrmuc, I. Korhonen, J. Poměnková, Wavelet spectrum analysis of business cycles of China and G7 countries. Applied Economic Letters, 21 (2014) [Google Scholar]
  8. A. K. Tiwari, M. I. Mutascu, A. T. Abulescu, Continuous wavelet transform and rolling correlation of European stock markets. International Review of Economics and Finance, 42 (2016) [Google Scholar]
  9. Z. Ftiti, A. Tiwari, A. Belanés, Tests of financial market contagion: Evolutionary cospectral analysis v.s. wavelet analysis. Computational Economics, 46 (2014) [Google Scholar]
  10. Ch. Torrence, G. P. Compo, A practical guide to wavelet analysis. Bulletin of the American Meteorological society, 79 (1998) [Google Scholar]
  11. Z. Ge, Significance tests for the wavelet cross spectrum and wavelet linear coherence. Annales Geophysicae, 26 (2008) [Google Scholar]
  12. Z. Ge, Significance tests for the wavelet power and the wavelet power spectrum. Annales Geophysicae, 25 (2007) [Google Scholar]
  13. W. T. Wells, R. L. Anderson, J. W. Cell, The distribution of the product of two central or non-central chi-square varietes, Ann. Math. Stat., 33 (1962) [Google Scholar]
  14. C. P. Robert, G. Casella, Monte Carlo Statistical Methods. (New York: Springer, 2004) [CrossRef] [Google Scholar]
  15. E. Klejmová, T. Malach, J. Poměnková, Segmentation based testing of co-movement significance. In : Proceedings of 25th International Conference on Systems, Signals and Image Processing (2018) [Google Scholar]
  16. W. H., Green, Econometric analysis. 7th~ed. (Prentice Hall, 2012) [Google Scholar]
  17. D. N. Gujarati, D. C. Porter, Basic Econometrics. 5th~ed. (Boston: McGraw-Hill Irwin, 2009) [Google Scholar]
  18. Organisation for Economic Co-operation and Development: National Accounts [online database] (2018). Accessed 27 March 2018 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.