Open Access
Issue
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
Article Number 01002
Number of page(s) 12
Section Communications-Systems-Signal Processing
DOI https://doi.org/10.1051/itmconf/20192401002
Published online 01 February 2019
  1. T. Antczak, N. Abdulaleem: E-optimality conditions and Wolfe E-duality for E-differentiable vector optimization problems with inequality and equality constraints, accepted for publication in Journal of Nonlinear Sciences and Applications, 2018. [Google Scholar]
  2. T. Antczak, (p, r)-invex sets and functions, Journal of Mathematical Analysis and Applications, 263(2), (2001) 355–379. [CrossRef] [Google Scholar]
  3. T. Antczak, A class of B − (p, r)-invex functions and mathematical programming, Journal of Mathematical Analysis and Applications, 286(1), (2003) 187–206. [CrossRef] [Google Scholar]
  4. T. Antczak, B − (p, r)-pre-invex functions, Folia Mathematica Acta Universitatis Lodziensis, 11, (2004) 3–15. [Google Scholar]
  5. T. Antczak, r-preinvexity and r-invexity in mathematical programming, Computers & Mathematics with Applications, 50(3-4), (2005) 551–566. [CrossRef] [Google Scholar]
  6. A. Ben-Israel, B. Mond, What is invexity?, Journal of the Australian Mathematical Society, 28(1), (1986) 1–9. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Bhatia, A. Sharma, New-invexity type conditions with applications to constrained dynamic games, European Journal of Operational Research, 148(1), (2003) 48–55. [CrossRef] [Google Scholar]
  8. B. D. Craven, Invex functions and constrained local minima, Bulletin of the Australian Mathematical Society 24(3), (1981) 357–366. [Google Scholar]
  9. B. D. Craven and B.M. Glover: Invex functions and duality, Journal of the Australian Mathematical Society 39(1), (1985) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. A. Hanson, B. Mond, Further generalizations of convexity in mathematical programming, Journal of Information and Optimization Sciences, 3(1), (1982) 25–32. [CrossRef] [Google Scholar]
  11. M. A. Hanson, B. Mond, Necessary and sufficient conditions in constrained optimization, Mathematical programming, 37(1), (1987) 51–58. [CrossRef] [Google Scholar]
  12. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, 80(2), (1981) 545–550. [Google Scholar]
  13. V. Jeyakumar, B. Mond, On generalised convex mathematical programming, The Anziam Journal, 34(1), (1992) 43–53. [Google Scholar]
  14. V. Jeyakumar, Strong and weak invexity in mathematical programming, Mathematical Methods of Operations Research, 55, (1985) 109–125. [Google Scholar]
  15. R. N. Kaul, S. K. Suneja, and Srivastava M. K., Optimality criteria and duality in multiple-objective optimization involving generalized invexity, Journal of Optimization Theory and Applications, 80(3), (1994) 465–482. [CrossRef] [Google Scholar]
  16. Luo, Zhiming, Some properties of semi-E-preinvex maps in Banach spaces, Nonlinear Analysis: Real World Applications, 12(2), (2011) 1243–1249. [CrossRef] [Google Scholar]
  17. J. G. Lin, Maximal vectors and multi-objective optimization, Journal of Optimization Theory and Applications, 18(1), (1976) 41–64. [CrossRef] [Google Scholar]
  18. O. L. Mangasarian, Nonlinear programming, Society for Industrial and Applied Mathematics, 1994. [Google Scholar]
  19. A. A. Megahed, H. G. Gomma, E. A. Youness, A. Z. El-Banna, Optimality conditions of E-convex programming for an E-differentiable function, Journal of Inequalities and Applications, 2013(1), (2013) 246. [CrossRef] [Google Scholar]
  20. S. Mititelu, I. M. Stancu-Minasian, Invexity at a point: generalisations and classifications, Bulletin of the Australian Mathematical Society, 48(1), (1993) 117–126. [CrossRef] [Google Scholar]
  21. S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, Journal of Mathematical Analysis and Applications, 189(3), (1995) 901–908. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. K. Suneja, S. Khurana, Generalized nonsmooth invexity over cones in vector optimization, European Journal of Operational Research, 186(1), (2008) 28–40. [CrossRef] [Google Scholar]
  23. T. Weir, B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136(1), (1988) 29–38. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. A. Youness, E-convex sets, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications, 102(2), (1999) 439–450. [Google Scholar]
  25. X. M. Yang, On E-convex sets, E-convex functions and E-convex programming, Journal of Optimization Theory and Applications, 109(3), (2001) 699–704. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.