Open Access
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
Article Number 01008
Number of page(s) 5
Section Communications-Systems-Signal Processing
Published online 01 February 2019
  1. A. Klinger, The Vandermonde matrix. The American Mathematical Monthly. 74 (5), pp. 571–574 (1967) [Google Scholar]
  2. V. Pless, Introduction to the Theory of Error-Correcting Codes. John Wiley, New York (1982) [Google Scholar]
  3. R. E. Blahut, Theory and Practice of Error Control Codes. Addison Wesley, Reading, Mass., USA (1983) [Google Scholar]
  4. G. H. Golub, C. F. Van Loan, Matrix Computation, Johns Hopkins Univ. Press, Baltimore, pp. 119–124 (1983) [Google Scholar]
  5. J. J. Rushanan, On the Vandermonde Matrix. The American Mathematical Monthly, Published by: Mathematical Association of America. 96 (10), pp. 921–924 (1989) [CrossRef] [Google Scholar]
  6. K. Ye, New classes of matrix decompositions, Lin. Algeb. and its App., 514, pp. 47–81, (2017) [CrossRef] [Google Scholar]
  7. I.-P. Kim, A. R. Kräuter, Decompositions of a matrix by means of its dual matrices with applications, Lin. Algeb. and its App., 537, pp. 100–117, (2018) [CrossRef] [Google Scholar]
  8. J. E. Dennis, J. F. Traub, R. P. Weber, On the matrix polynomial, lambda-matrix and block eigenvalue problems. Computer Science Department Tech. rep., Carnegie-Mellon Univ., Pittsburgh, Pa., USA (1971) [Google Scholar]
  9. J. E. Dennis, J. F. Traub, R. P. Weber, The algebraic theory of matrix polynomials. SIAM J. Numer. Anal. 13 (6), pp. 831–845 (1976) [CrossRef] [Google Scholar]
  10. J. E. Dennis, J. F. Traub, R. P. Weber, Algorithms for solvents of matrix polynomials. SIAM J. Numer. Anal. 15 (3), pp. 523–533 (1978) [CrossRef] [Google Scholar]
  11. D. R. Richman, A result about block Vandermonde Matrices. Lin. and Multilin. Alg. 21, pp. 181–189 (1987) [CrossRef] [Google Scholar]
  12. Q. Li, B. Wu, and Z. Liu, Direct Constructions of (Involutory) MDS Matrices from Block Vandermonde and Cauchy-like Matrices, International Workshop on the Arithmetic of Finite Fields (WAIFI) 2018, Bergen, Norway. June 14-16, (2018) [Google Scholar]
  13. Y. Choi, J. Cheong, New Expressions of 2x2 Block Matrix Inversion and Their Application. IEEE Trans. Auto. Cont. 54 (11), 2648–2653 (2009) [CrossRef] [Google Scholar]
  14. A. Asif, J. M. F. Moura, Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Istanbul, Turkey. 1, pp. 608–611, (2000) [Google Scholar]
  15. M. Yaici, K. Hariche, On eigenstructure assignment using block poles placement. Euro. J. Cont. 20, pp. 217–226 (2014) [CrossRef] [Google Scholar]
  16. L. Shang, Z. Wang, S. G. Petiton, F. Xu, Solution of Large Scale Matrix Inversion on Cluster and Grid. 7th Int. Conf. on Grid and Cooperative Computing, Shenzhen, China, pp. 33–40 (2008) [Google Scholar]
  17. K. Hariche, E. D. Denman, Interpolation theory and Lambda matrices. J. Math. Anal. Appl. 143, pp. 530–547 (1989) [CrossRef] [Google Scholar]
  18. T. Kailath, Linear Systems. Prentice Hall, New Jersey (1980) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.