Open Access
Issue
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
Article Number 01014
Number of page(s) 5
Section Communications-Systems-Signal Processing
DOI https://doi.org/10.1051/itmconf/20192401014
Published online 01 February 2019
  1. K. Nagel, M.A. Schreckenberg. Cellular automation models for freeway traffic J. Phys. I. (DOI: 10.1051/jp1.1992277) 2 (12) 2221– 2229 (1992) [Google Scholar]
  2. V. Belitzky, P.A. Ferrary. Invariant measures and convergence properties for cellular automation 184 and related processes J. Stat. Phys. (DOI: 10.1007/s10955-044-8822-4) 118 (3) 589–623 (2005) [CrossRef] [Google Scholar]
  3. S. Wolfram. Statistical mechanics of cellular automata Rev. Mod. Phys. 55 601–644 (1983) [CrossRef] [Google Scholar]
  4. M.L. Blank. Exact analysis of dynamical systems arising in models of flow traffic Russian Math Surveys (DOI:.org/10.4213/rm295) 55 (5) 562–563 (2005) [CrossRef] [Google Scholar]
  5. L. Gray, D. Grefeath The ergodic theory of traffic jams. J. Stat. Phys. (DOI: 10.1023/A:1012202706850) 105 (3/4) 413–452 (2001) [CrossRef] [Google Scholar]
  6. Kanai M. Exact solution of the zero range process Journal of Physics A. Mathematical and Theoretical (DOI:10.1088/1751-8118/40/26/001) 40 (19) 7127–7138 (2007) [CrossRef] [Google Scholar]
  7. Blank M. Metric properties of discrete time exclusion type processes in continuum. J. Stat. Phys. (DOI: 10.1007/s10955-010-9983-y) 140 (1) 170–197 (2010) [CrossRef] [Google Scholar]
  8. Biham O., Middleton A.A., Levine D. Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A (DOI: 10.1003/PhysRevA.46.R6124) 46 (10) R6124–R6127 (1992) [CrossRef] [PubMed] [Google Scholar]
  9. Austin T., Benjamini I. For what number of cars must self-organization occur in the Biham–Middleton–Levine traffic model from any possible starting configuration? arXiv.math/0607759 [Google Scholar]
  10. V.V. Kozlov, A.P. Buslaev, A.G. Tatashev On synergy of totally connected flow on chainmails (CMMSE-2013, Cadis, Spain) 3 861–6 873 (2013) [Google Scholar]
  11. A.P. Buslaev, M.Yu. Fomina, A.G. Tatashev, M.V. Yashina. On discrete flow networks model spectra: statement, simulation, hypotheses. J. Phys.: Conf. Ser. (DOI: 10.1088/1742/6596/1053/1/012034) 1053 012034 (2018) [CrossRef] [Google Scholar]
  12. A.P. Buslaev, A.G. Tatashev, M.V. Yashina. About synergy of flows on flower (DepCoS-RELCOMEX 2016, Brunow, Poland) Springer 75–84 (2016) [Google Scholar]
  13. A.P. Buslaev, A.G. Tatashev. Flows on discrete traffic flower. Journal of Mathematics Research (DOI 10.5539/jmr.v9n1p98) 9 (1) 98–108 (2018) [CrossRef] [Google Scholar]
  14. A.P. Buslaev, A G. Tatashev. Exact results for discrete dynamical systems on a pair of contours. Math. Meth. Appl. Sci. (DOI:10.1002/mma.4822), February (2018) [Google Scholar]
  15. A.P. Buslaev, A.G. Tatashev, M.V. Yashina. Qualitative properties of dynamical system on toroidal chainmail. (ICNAAM–2013, Rhodes, Greece) AIP Conference Proceedings 1558 1144—1147 (2013) [Google Scholar]
  16. V.V. Kozlov, A.P. Buslaev, A.G. Tatashev. Monotonic walks on a necklace and coloured dynamic vector. Int J Comput Math (DOI 1080/00207160.2014/915964) 92 (9) 1910 – 1920 (2015) [CrossRef] [Google Scholar]
  17. V.V. Kozlov, A.P. Buslaev, A.G. Tatashev. A dynamical communication system on a network J Comput Appl Math (DOI 10.1016/j.cam.2014.07.026) 275 247–261 (2015) [CrossRef] [Google Scholar]
  18. V.V. Kozlov, A.P. Buslaev, A.G. Tatashev and M.V. Yashina. Dynamical systems on honeycombs. (Traffic and Granular Flow ’13. Springer Verlag, Heidelberg 441–452 (2015) [Google Scholar]
  19. V.V. Kozlov, A.P. Buslaev, A G, Tatashev. On real-valued oscillations of a bipendulum. Appl Math Lett (DOI 10.1016/j.aml.2015.02.003) 46 44–49 (2015) [CrossRef] [Google Scholar]
  20. A.P. Buslaev, A.G. Tatashev, M.V. Yashina. On irrational oscillations of a bipendulum (DepCoS-RELCOMEX, Brunow, Poland) Springer 365 57–63 (2015) [Google Scholar]
  21. A.P. Buslaev, M.V. Yashina. On holonomic mathematical F-bipendulum. Math. Meth. App. Sci., 39, 4820–4828(2016) [CrossRef] [Google Scholar]
  22. A. P. Buslaev, A.G. Tatashev, M.V. Yashina. Flows spectrum on closed trio of contours Eur. J. Pure Appl. Math. (DOI 10.29020/nybg.ejpam.v11i1.3201) 11 (3) 893–897 (2018). [Google Scholar]
  23. A.P. Buslaev, A.G. Tatashev, M.V. Yashina. On cellular automata, traffic, and dynamical systems in graphs. Int. J. Eng. Technol. (DOI: 10.114419/ijet.v7i2.28.13210) 7(2.28) 351–356 (2018) [Google Scholar]
  24. A.P. Buslaev, A.G. Tatashev. Spectra of local cluster flows on open chain of contours.Eur.J.PureAppl.Math.(DOI10.29020/ny/by.ejpam.v.Mi3.3292) 11 (3) 628–641 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.