Open Access
Issue |
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 4 | |
Section | Computers | |
DOI | https://doi.org/10.1051/itmconf/20192402008 | |
Published online | 01 February 2019 |
- J.M.J Frechet and D.A. Tomalia, Dendrimers and Other Dendriric Polymers, (John Wiley&Sons Ltd.:West Sussex, 2001) [CrossRef] [Google Scholar]
- R.G. Denkewalter, J. Kolc, W.J. Lukasavage, Macromolecular Highly Branched Homogeneous Compound, 1983, US Patent № 4410688. [Google Scholar]
- C.C. Lee, J.M.J. Fréchet, ―Synthesis and Conformations of Dendronized Poly-L-Lysine‖, Macromolecules, 39, 476, (2006). [CrossRef] [Google Scholar]
- H. Cottet, M. Martin, A. Papillaud, E. Souaid, H. Collet, A. Commeyras, Determination of dendrigraft poly-L-lysine diffusion coefficients by Taylor dispersion analysis‖, Biomacromolecules, 8, 3235, (2007). [CrossRef] [Google Scholar]
- H. Collet, E. Souaid, H. Cottet, A. Dératani, L. Boiteau, G. Dessalces, J.-C. Rossi, A. Commeyras, R. Pascal, Expeditious, multigram scale synthesis of lysine dendrigraft (DGL) polymers by aqueous Ncarboxyanhydride polycondensation‖, Chem. Eur. J., 16, 2309 (2010). [CrossRef] [Google Scholar]
- J.-C. Rossi, L. Boiteau, H. Collet, B.M. Tsamba, N. Larcher, R. Pascal, Functionalisation of free amino groups of lysine dendrigraft (DGL) polymers‖, Tetrahedron Letters, 53, 2976 (2012). [CrossRef] [Google Scholar]
- F. Oukacine, B. Romestand, D.M. Goodall, G. Massiera, L. Garrelly, H. Cottet, ―Study of Antibacterial Activity by Capillary Electrophoresis Using Multiple UV Detection Points‖, Anal. Chem., 84, 3302 (2012). [CrossRef] [Google Scholar]
- A. Cadiere, B. Couturaud, J. Boismard, P. Le Cann, A. Gerard, A. Mas, C. Faye, L. Garrelly, B. Roig, Assessment of poly-L –lysine dendrigrafts for virus concentration in water: use of MS2 bacteriophage as proof of concept‖, Journal of Applied Microbiology, 115, 290 (2013). [CrossRef] [Google Scholar]
- J. Li, Y. Guo, Y. Kuang, S. An, H. Ma, C. Jiang, Choline transportertargeting and co-delivery system for glioma therapy‖, Biomaterials, 34, 9142 (2013). [CrossRef] [Google Scholar]
- V.N. Anisimov, V.K. Khavinson,. Peptide bioregulation of aging: results and prospects. Biogerontology, 11, 139 (2009). [CrossRef] [Google Scholar]
- E.V. Popova, O.V. Shavykin, I.M. Neelov, F. Leermakers, Molecular dynamics simulation of lysine dendrimer and Semax peptides interaction, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 16, 716 (2016). [CrossRef] [Google Scholar]
- B.J. Alder and T.E. Wainwright, ―Molecular Dynamics by Electronic Computers‖ in International Symposium on Transport Processes in Statistical Mechanics, (I. Prigogine, New York: John Wiley Int., 97 1957) [Google Scholar]
- L. Verlet, Computer experiments‖ on classical fluids. I.Thermodynamical properties of Lennard-Jones molecules, Phys. Rev.,159, 98 (1967) [Google Scholar]
- A. Rahman, F.H. Stillinger, ―Mollecular dynamics study of temperature effects on water structure and kinetics‖, J Chem Phys, 57, 1281 (1972). [CrossRef] [Google Scholar]
- N.K. Balabaev, A.G. Grivtsov, E.E. Shnol, Numerical modeling of motion of molecules. Motion of isolated polymer chain‖, Preprint of Institute of Applied Mathematics 4, 38 (1972). [Google Scholar]
- J.P. Ryckaert, G. Ciccotti, H.V.C. Berendsen, Numerical integration of Cartesian equations of motion of systems with constraints-molecular dynamics of n-alkanes‖, J Comput Phys, 23, 327 (1977). [CrossRef] [Google Scholar]
- B. Hess, C. Kutzner, D. Spoel, E. Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation‖, Journal of Chemical Theory &Computation, 4, 435 (2008). [CrossRef] [Google Scholar]
- V. Hornak, R. Abel, A. Okur, D. Strockbine, A. Roitberg, C. Simmerling, Comparison of multiple amber force fields and development of improved protein backbone parameters‖, Proteins: Structure Function and Genetics, 65, 712 (2006). [CrossRef] [PubMed] [Google Scholar]
- I.M. Neelov, D.A. Markelov, S.G. Falkovich, M.Y. Ilyash, B.M. Okrugin, A.A. Darinskii, Mathematical Simulation of Lysine Dendrimers. Temperatiure Dependences‖, Polymer Science, 55, 154, (2013). [Google Scholar]
- S. Falkovich, D. Markelov, I. Neelov, A. Darinskii, Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers‖, Journal of Chemical Physics, 139, 064903 (2013). [CrossRef] [Google Scholar]
- I. Neelov, S. Falkovich, D. Markelov, E. Paci, A. Darinskii, H. Tenhu, Molecular Dynamics of Lysine Dendrimers‖ in Computer Simulation and NMR. Dendrimers in Biomedical Applications, (RSC. London, 99, 2013). [CrossRef] [Google Scholar]
- I.M. Neelov, A. Janaszewska, B. Klajnert, M. Bryszewska, N. Makova, D. Hicks, N. Pearson, G.P. Vlasov, M.Y. Ilyash, D.S. Vasilev, N.L. Dubrovskaya, L.A. Zhuravin, A.J. Turner, N.N. Nalivaeva, Molecular properties of lysine dendrimers and their interactions with Ab-peptides and neuronal cells‖, Current Medical Chemistry, 20, 134, (2013). [CrossRef] [Google Scholar]
- D.A. Markelov, S.G. Falkovich, I.M. Neelov, M.Y. Ilyash, V.V. Matveev, E. Lahderanta, P. Ingman, A.A. Darinskii, Molecular Dynamics Simulation of Spin-lattice NMR Relaxation in Poly-L-lysine Dendrimers. Manifestation of the Semiflexibility Effect‖, Physical Chemistry and Chemical Physics, 17, 3214, ( 2015). [CrossRef] [Google Scholar]
- J. Ennari, M. Elomaa, I. Neelov, F. Sundholm, Modelling of water free and water containing solid polyelectrolytes‖, Polymer, 41, 985 (2000). [CrossRef] [Google Scholar]
- J. Ennari, I. Neelov, F. Sundholm, ―Comparison of Cell Multipole and Ewald Summation Methods for Solid Polyelectrolyte‖, Polymer, 41, 2149–2155, (2000). [CrossRef] [Google Scholar]
- J. Ennari, I. Neelov, F. Sundholm, ―Molecular Dynamics Simulation of the PEO Sulfonic Acid Anion in Water‖, Comput Theor Polym Sci, 10, 403 (2000). [CrossRef] [Google Scholar]
- J. Ennari, I. Neelov, F. Sundholm, ―Molecular dynamics simulation of the structure of PEO based solid polymer electrolytes‖, Polymer, 41, 4057 (2000) [CrossRef] [Google Scholar]
- J. Ennari, I. Neelov, F. Sundholm, ― Estimation of the ion conductivity of a PEO-based polyelectrolyte system by molecular modeling‖, Polymer, 42, 8043, (2001). [CrossRef] [Google Scholar]
- J. Ennari, I. Neelov, F. Sundholm, ―Modellling of gas transport properties of polymer electrolytes containing various amount of water, Polymer, 45, 4171 (2004). [CrossRef] [Google Scholar]
- V. Sadovnichy, A. Tikhonravov, V. Voevodin, V. Opanasenko, Contemporary High Performance Computing: From Petascale toward Exascale, (Boca Raton, 283, 2013). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.