Open Access
ITM Web Conf.
Volume 29, 2019
1st International Conference on Computational Methods and Applications in Engineering (ICCMAE 2018)
Article Number 01004
Number of page(s) 7
Section Applied/Computational Mathematics
Published online 15 October 2019
  1. I. Csiszár, Information-type measures of difference of probability functions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299–318. [Google Scholar]
  2. G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1978. [Google Scholar]
  3. H. Jeffreys An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. Lon., Ser. A, 186, (1946), 453–461. [Google Scholar]
  4. S. Kullback and R.A. Leibler, On information and suffciency, Ann. Math. Stat., 22 (1), (1951), 79–86. [CrossRef] [Google Scholar]
  5. S. Kullback, Information Theory and Statistics, John Willey & Sons, New York (1959). [Google Scholar]
  6. S. Simic, On logarithmic convexity for differences of power means, J. Inequal. Appl. Article ID 37359 (2007), 8 p. [Google Scholar]
  7. S. Simic, On a new moment inequality, Statist. Probab. Lett., 78 (16), (2008), 2671–2678. [CrossRef] [Google Scholar]
  8. I.J. Taneja, New developments in generalized information measures, Advances in Imaging and Electron Physics, 91 (1995), 37–135. [CrossRef] [Google Scholar]
  9. I. Vajda, Theory of Statistical Inference and Information, Kluwer Academic Press, London (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.