Open Access
Issue
ITM Web Conf.
Volume 29, 2019
1st International Conference on Computational Methods and Applications in Engineering (ICCMAE 2018)
Article Number 01011
Number of page(s) 8
Section Applied/Computational Mathematics
DOI https://doi.org/10.1051/itmconf/20192901011
Published online 15 October 2019
  1. C. Bota, B. Caruntu, Analitic Aproximate Solutions for a class of variable order fractional differential equations using the Polynomial Least Squares Method, De Gruyter, Fractional Calculus and Applied Analysis, Volume 20, Number 4 (2017). [CrossRef] [Google Scholar]
  2. S. Alkan, K. Yildirim, A. Secer, An efficient algorithm for solving fractional differential equations with boundary conditions, De Gruyter, DOI 10.1515/phys-2015-0048 [Google Scholar]
  3. W.K. Zahra, S.M. Elkholy, Cubic Spline solution of fractional Bagley Torvik Equation, Electronic Journal of Mathematical Analysis and Applications, Vol. 1(2) July 2013, pp. 230–241 [Google Scholar]
  4. M.F. Karaaslan, F. Celiker, M. Kurulay, Approximate solution of the Bagley-Torvik equation by hybridizable discontinuous Galerkin methods, Applied Mathematics and Computation 285 (2016) 51–58. [CrossRef] [Google Scholar]
  5. S. Mashayekhi, M. Razzaghi, Numerical solution of the fractional Bagley-Torvik equation by using hybrid functions approximation, Math. Meth. Appl.Sci. 39 (2016) 353–365. [CrossRef] [Google Scholar]
  6. C. Bota, B. Caruntu. Approximate Analytical Solutions of the Fractional-Order Brusse- lator System Using the Polynomial Least Squares Method, Hindawi publishing Corporation Advances in Mathematical Physics Volume 2015, Article ID 450235, 5 pages [Google Scholar]
  7. Qasem M. Al-Mdallal, Muhammed I. Syam, M.N. Anwar, A collocation-shooting method for solving fractional boundary value problems, Commun Nonlinear Sci Nu- mer Simulat 15 (2010) 3814–3822 [CrossRef] [Google Scholar]
  8. C. Bota, B Caruntu, Analytical approximate solutions for quadratic Riccati differential equation of fractional order using the Polynomial Least Squares Method, Elsevier, Chaos, Solitons and Fractals 102 (2017) 339–345. [Google Scholar]
  9. G. Groza, M. Razzaghi, A Taylor series method for the solution of the linear initial-boundary-value problems for partial differential equations, Elsevier, Computers and Mathematics with Applications 66 (2013) 1329–1343 [Google Scholar]
  10. Yucel Cenesiz, Yildiray Keskin, Aydin Kurnaz, The solution of the Bagley-Torvik equation with the generalized Taylor collocation method, Journal of the Franklin Institute 347 (2010) 452–466 [CrossRef] [Google Scholar]
  11. W.K. Zahra, M. Van Daele, Discrete spline methods for solving two point fractional Bagley-Torvik equation, Elsevier, Applied Mathematics and Computation 296 (2017) 42–56. [CrossRef] [Google Scholar]
  12. J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation, Elsevier, Applied Mathematics Letters 76 (2018) 221–226. [CrossRef] [Google Scholar]
  13. R.A. Khan, M. Rehman, J. Henderson, Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions, Fractional Differential Calculus, Volume 1, Number 1 (2011), 29–43. [CrossRef] [Google Scholar]
  14. X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl. 8 (2015), 309–314. [CrossRef] [Google Scholar]
  15. J.G. Llavona, Approximation of Continuously Differentiable Functions, North-Holland Mathematics Studies 130, New York, 1986. [Google Scholar]
  16. M Megan, Bazele analizei matematice, Vol. I + Vol. II, Editura EUROBIT, Timisoara, 1997. Vol. III, Editura EUROBIT, Timisoara, 1998. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.