Open Access
ITM Web Conf.
Volume 29, 2019
1st International Conference on Computational Methods and Applications in Engineering (ICCMAE 2018)
Article Number 02001
Number of page(s) 20
Section Computational Methods in Mechanical Engineering
Published online 15 October 2019
  1. D.W. Green, R.H. Perry, Perry's Chemical Engineers' Handbook, McGraw-Hill Professional, New York, 2007. [Google Scholar]
  2. J.R. Couper, W.R. Penney, J.R. Fair, Chemical Process Equipment - Selection and Design, Gulf Professional Publishing, 2009. [Google Scholar]
  3. E.E. Ludwig, Applied process design for chemical and petrochemical plants, Gulf Publishing Company, Houston, 1991. [Google Scholar]
  4. A.K. Coker, Ludwig's Applied Process Design for Chemical and Petrochemical Plants - Volume 1, Elsevier Inc., Amsterdam, 2010. [Google Scholar]
  5. H. Recknagel, E. Sprenger, E.R. Schramek, Taschenbuch fur Heizung und Klimatechnik einschliesslich Warmwasser- und Kaltetechnik, Deutscher Industrieverlag, 2012. [Google Scholar]
  6. ASHRAE Handbook - Fundamentals, ASHRAE, Atlanta, 2013. [Google Scholar]
  7. J. Weisbach, Lehrbuch der Ingenieur- und Maschinen-Mechanik, Braunschwieg, 1845. [Google Scholar]
  8. O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philosophical Transactions of the Royal Society, 174 (1883) 935–982 [CrossRef] [Google Scholar]
  9. H. Darcy, Recherche Experimentales Relatives au Mouvement de L'Eau dans les Tuyaux, Mallet-Bachelier, Paris, 1857. [Google Scholar]
  10. R. von Mises, Elemente der Technischen Hydrodynamik, Leipzig, BG Teubner, 1914. [Google Scholar]
  11. J.L. Poiseuille, Recherche experimentales sur le mouvement des liquides dans les tubes de tres-petits diametres, Comptes Rendus, Academie des Sciences, Paris, 11 (1840)961–967 [Google Scholar]
  12. G. Hagen, Gber die Bewegung des Wassers in engen zylindrischen Rohren, Pogg. Ann., 46 (1839) 423–442 [Google Scholar]
  13. F. White, Fluid Mechanics, McGraw-Hill, 2010. [Google Scholar]
  14. J.H. Spurk, N. Aksel, Fluid Mechanics, Springer-Verlag Berlin, 2008. [Google Scholar]
  15. C.F. Colebrook, C.M. White, Experiments with Fluid Friction in Roughened Pipes, Proc. R. Soc. Lond. , A 161 (1937) 367–381 [Google Scholar]
  16. L.I. Langelandsvik, G.J. Kunkel, Smits A. J., Flow In a Commercial Steel Pipe, J. Fluid Mech, 595 (2008) 323–339 [CrossRef] [Google Scholar]
  17. R.G. Allen, Relating the Hazen-Williams and Darcy-Weisbach Friction Loss Equations for Pressurized Irrigation, Applied Engineering in Agriculture, 12-6 (1996) 685693 [Google Scholar]
  18. P.M. Coelho, C. Pinho, Considerations About Equations for Steady State Flow in Natural Gas Pipelines, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 29-3 (2007) 262– 273 [CrossRef] [Google Scholar]
  19. H. Blasius, Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten. Forschung Ingenieur, 134 (1913) 1–40 [Google Scholar]
  20. B.J. Mckeon, High Reynolds Number Turbulent Pipe Flow, PhD Thesis, Princeton University, 2003. [Google Scholar]
  21. E.C. Koo, Mechanisms Of Isothermal And Non-Isothermal Flow Of Fluids In Pipes, Sc.D. Thesis, Chem. Eng., Massachusetts Institute of Technology, Cambridge, MA, 1932. [Google Scholar]
  22. W.H. McAdams, Heat Transmission, McGraw-Hill, New York, 1933. [Google Scholar]
  23. J. Nikuradse, Gesetzmessigkeiten der turbulenten stromung in glatten rohren, Forschungsheft 356, volume B. VDI Verlag Berlin, 1932. [Google Scholar]
  24. J. Nikuradse, Stromungsgesetze in rauhen rohren. Forschungsheft 361, volume B, VDI Verlag Berlin, 1933. Translated in NACA Technical Memorandum nr. 1292, 1950. [Google Scholar]
  25. B.L. Shifrinson, New method for district water system optimization, Heat and Power, 2 (1937) 4–9 [Google Scholar]
  26. C.F. Colebrook, Turbulent Flow In Pipes, With Particular Reference To The Transition Region Between Smooth And Rough Pipe Laws, Journal Of The Institution Of Civil Engineers, 2 (1939) 133–167 [Google Scholar]
  27. H. Rouse, Evaluation Of Boundary Roughness, Proc. 2nd Hydraul. Conf., The University Of Iowa Studies In Engineering, Bulletin No. 27, Wiley, New York, 105–116. [Google Scholar]
  28. L.F. Moody, Friction factors for pipe flow, Transactions of the ASME, 66-8 (1944)671–684 [Google Scholar]
  29. E. Sletfjerding, Gudmundsson J. S., Friction Factor In High Pressure Natural Gas Pipelines From Roughness Measurements, International Gas Research Conference, Amsterdam, November 5-8, 2001. [Google Scholar]
  30. M.V. Zagarola A.J. Smits, Mean-Flow Scaling Of Turbulent Pipe Flow, J. Fluid Mech. (1998), vol. 373, pp. 33–79 [CrossRef] [Google Scholar]
  31. N. Afzal, Friction Factor Directly From Transitional Roughness in a Turbulent Pipe Flow, Transactions of the ASME, Journal of Fluids Engineering, 129-10 (2007) 12551257 [Google Scholar]
  32. K.A. Flack, M.P. Schultz, Review Of Hydraulic Roughness Scales In The Fully Rough Regime, Journal Of Fluids Engineering, 132 (2010) 4 [Google Scholar]
  33. U. S. Bureau of Reclamation, Friction Factors For Large Conduit Flowing Full, Engineering Monograph, No. 7, U.S. Dept. of Interior, Washington DC, 1965. [Google Scholar]
  34. R.L. Sanks, Tchobanoglous G., Bosserman B. E., Jones G. M., Pumping Station Design, Butterworth-Heinemann, 1998. [Google Scholar]
  35. H.Y. Wu, P. Cheng, An Experimental Study Of Convective Heat Transfer In Silicon Microchannels With Different Surface Conditions, Int. J. Heat Mass Transfer, 46-14 (2003)2547–2556 [CrossRef] [Google Scholar]
  36. G.P. Celata, M. Lorenzini, G.L. Morini, G. Zummo, Friction factor in micro pipe gas flow under laminar, transition and turbulent flow regime, International Journal of Heat and Fluid Flow, 30 (2009)814–822 [CrossRef] [Google Scholar]
  37. S.L. Qi, P. Zhang, R.Z. Wang, L.X. Xu, Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes, International Journal of Heat and Mass Transfer, 50 (2007)1993–2001 [CrossRef] [Google Scholar]
  38. D.W. Schroeder, A Tutorial On Pipe Flow Equations, Stoner Associates Inc., Carlisle, Pennsylvania, August 2001 [Google Scholar]
  39. E. Sletfjerding, J.S. Gudmundsson, Friction Factor In High-Pressure Gas Pipelines In The North Sea, SPE/CERI Gas Technology Symposium, 3-5 April 2000, Calgary, Canada [Google Scholar]
  40. B.J. Mckeon, J. Li, W. Jiang, J.F. Morrison, A.J. Smits, Further Observations On The Mean Velocity Distribution In Fully Developed Turbulent Pipe Flow. J. Fluid Mech., 501 (2004)135–147 [CrossRef] [Google Scholar]
  41. B.J. Mckeon, M.V. Zagarola, A.J. Smits, A New Friction Factor Relationship For Fully Developed Pipe Flow, J. Fluid Mech., 538 (2005)429–443 [CrossRef] [Google Scholar]
  42. R.V. Smith, Practical Natural Gas Engineering, Penn Well Books, 1990 [Google Scholar]
  43. M.A. Shockling, J.J. Allen, A.J. Smits, Roughness effects in turbulent pipe flow, J. Fluid Mech., 564 (2006)267–285 [CrossRef] [Google Scholar]
  44. R. Smith, J. Miller, J. Ferguson, Flow of natural gas through experimental pipelines and transmission lines, Bureau of Mines, Monograph 9, American Gas Association, 1956. [Google Scholar]
  45. A. Uhl, K.B. Bischoff, R.F. Bukacek, P.V. Burket, R.T. Ellington, D.V. Kniebes, Staats W. R., Worcester D. A., Steady flow in gas pipelines, Institute of Gas Technology Technical report no. 10 American Gas Association, 1965. [Google Scholar]
  46. K. Gersten, H.H. Papenfuss, T. Kurschat, P. Genillon, F. Fernandez Perez, N. Revell, New Transmission-factor formula proposed for gas pipelines, 99-2 (2000)58–62 [Google Scholar]
  47. J. Piggott, N. Revell, T. Kurschat, (2002), Taking the Rough with the Smooth - a new look at transmission factor formulae, Proceedings of the 2002 PSIG Conference Portland Oregon [Google Scholar]
  48. O. Bratland, Pipe Flow 1 Single phase flow assurance, 2013. [Google Scholar]
  49. E. Sletfjerding, Friction Factor in Smooth and Rough Gas Pipelines, Dr.-Ing. thesis, Norwegian University of Science and Technology, Trondheim, 1999 [Google Scholar]
  50. F. Concha, Settling velocities of particulate systems 15: Velocities in turbulent Newtonian flows, Int. J. Miner. Process., 88 (2008)89–93 [CrossRef] [Google Scholar]
  51. G.K. Filonenko, Hydraulic resistance in pipes, Teploenergetika, 1-4 (1954)40–44 [Google Scholar]
  52. F.P. Incropera, D. P. De Witt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2001. [Google Scholar]
  53. А. Д. Алтшуль, Обсбшенная формула сопротивления трубопроводов, Гидравлические строительство, 6 (1952) [Google Scholar]
  54. R.J. Tsal, Altshul-Tsal Friction Factor Equation, Heating, Piping And Air Conditioning, No. 8, 1989 [Google Scholar]
  55. S. Genic, I. Arandjelovic, P. Kolendic, M. Jaric, N. Budimir, V. Genic, A Review of Explicit Approximations of Colebrook's Equation, FME Transactions 39 (2011)67–71 [Google Scholar]
  56. S.E. Haaland, Simple and explicit formulas for the friction factor in turbulent pipe flow, Trans. ASME, Journal of Fluids Engineering, 105-11 (1983)89–90 [CrossRef] [Google Scholar]
  57. D.D. Joseph, B.H. Yang, Friction factor correlations for laminar, transition and turbulent flow in smooth pipes [Google Scholar]
  58. P.K. Swamee, Design of a submarine oil pipeline, J. Transportation Eng., 119-1 (1993)159–170 [CrossRef] [Google Scholar]
  59. A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akademik Nauk SSSR 30, 299–303 (In Russian), 1941. [Google Scholar]
  60. C.J. Swanson, B. Julian, G.G. Ihas, R.J. Donnelly, Pipe flow measurements over a wide range of Reynolds numbers using liquid helium and various gases, J. Fluid Mech., 461 (2002)51–60 [CrossRef] [Google Scholar]
  61. R. Milenkovic, Convective heat transfer in fluid flow through pipes with turbulators - MSc thesis (In Serbian), University of Belgrade - Faculty of Mechanical Engineering, 1999. [Google Scholar]
  62. A.J. Ghajar, K.F. Madon, Pressure drop measurements in the transition region for a circular tube with three different inlet configurations, Experimental Thermal and Fluid Science, 5 (1992)129–135 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.