Open Access
Issue
ITM Web Conf.
Volume 30, 2019
29th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2019)
Article Number 05008
Number of page(s) 7
Section Antennas and Antenna Elements (4)
DOI https://doi.org/10.1051/itmconf/20193005008
Published online 27 November 2019
  1. H. Arun, A.K. Sarma, M. Kanagasabai, S. Velan, C. Raviteja, M.G.N. Alsath, Deployment of modified serpentine structures for mutual coupling reduction in MIMO antennas, IEEE Antennas and wireless propagation letters, 13 (2014) [CrossRef] [Google Scholar]
  2. J. Yang, F. Yang, Z.M. Wang, Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application, IEEE Antennas and Wireless Propagation Letters., 10, 310-313 (2011) [CrossRef] [Google Scholar]
  3. R.J. Vaughan, J.B. Andersen, Antenna diversity in mobile communications, Proceedings of the IEEE Transactions on Vehicular Technology, 36, 147–172 (1987) [Google Scholar]
  4. H. Inanoglu, Multiple-input muliple-output system capacity: antennas and propagation aspects, Antennas and Propagation Magazine, 55, 254-273 (2013) [CrossRef] [Google Scholar]
  5. M.S. Sharawi, Current misuses and future prospects for printed multiple-input, multiple-output antenna systems, IEEE Antennas and Propagation Magazine, 59, (2017) [CrossRef] [Google Scholar]
  6. F. Yang, Y. Rahmat-Samii,. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications//IEEE Transactions on Antennas and Propagation, 51, 2936-2946 (2003) [CrossRef] [Google Scholar]
  7. N. Ma, H. Zhao, Reduction of the mutual coupling between aperture coupled microstrip patch antennas using EBG structure, IEEE International Wireless Symposium (IWS 2014), 1-4 (2014) [Google Scholar]
  8. A. Habashil, J. Nourinia, C. Ghobadi,. A rectangular defected ground structure (DGS) for reduction of mutual coupling between closely-spaced microstrip antennas, 20th Iranian Conferance on Electrical Engineering, (ICEE2012), May 15-17. Tehran, Iran, (2012) [Google Scholar]
  9. C.Y. Chiu, C.-H. Cheng, R.D. Murch, C.R. Rowell, Reduction of mutual coupling between closely-packed antenna elements. IEEE Transactions on Antennas and Propagation, 55, 1732-1738 (2007) [CrossRef] [Google Scholar]
  10. A. Diallo, C. Luxey, P. Le Thuc, R. Staraj, G. Kossiavas. Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals, IET Microwaves, Antennas & Propagation 2, 94-101 (2008) [CrossRef] [Google Scholar]
  11. C.-D. Xue, X.Y. Zhang, Y.F. Cao, Z. Hou, C.F. Ding, MIMO antenna using hybrid electric and magnetic coupling for isolation enhancement DOI 110.1109/TAP.2017.2738033, 65, 5162 – 5170 (2017) [Google Scholar]
  12. S. Farsi, H. Aliakbarian, D. Schreurs, B. Nauwelaers, G.A.E. Vandenbosch, Mutual coupling reduction between planar antennas by using a simple microstrip U-section, IEEE Antennas and Wireless Propagation Letters, 11, 1501-1503 (2012) [CrossRef] [Google Scholar]
  13. S. Blanch, R. Romeu, I. Corbella, Exact representation of antenna system diversity performance from input parameters description, Electron Lett., 39, 705–707 (2003) [CrossRef] [Google Scholar]
  14. J. Li, J.-B. Zhao, J.-J. Liang, L L. Zhong, J. Song, Metamaterial-based planar compact antenna with low mutual coupling, Microwave Journal, (2018) [Google Scholar]
  15. B. Feng, L. Li, J.-C. Cheng, A dual-band dual-polarized stacked microstrip antenna with high-isolation and band-notch characteristics for 5G microcell communications, IEEE Transactions on antennas and propagation, 67, 7 (2019) [Google Scholar]
  16. M.F.A. Kadir, M.Z.A.A. Aziz, M.K. Suaidi, M.R. Ahmad, Z. Daud, M.K.A. Rahim, MIMO beamforming network having polarization diversity, DOI: 10.5772/14186, In book: MIMO Systems, Theory and Applications (2011) [Google Scholar]
  17. M. L. Pablo-González, M. Sánchez-Fernández, E. Rajo-Iglesias, Combination of the three types of diversity to design high-capacity compact MIMO terminals, IEEE Antennas and Wireless Propagation Letters, DOI: 10.1109/LAWP.2014.2336174, 13, 1309-1312 (2014) [Google Scholar]
  18. R.C. Hansen, Phased array antennas, (John Willey & Sons, 2009) [CrossRef] [Google Scholar]
  19. T. Jiao1, T. Jiang1, Y. Li1, A low mutual coupling MIMO antenna using 3-D electromagnetic isolation wall structures, 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xian, China, 16-19 Oct. (2017) [Google Scholar]
  20. A. Habashil, J. Nourinia, C. Ghobadi, A rectangular defected ground structure (DGS) for reduction of mutual coupling between closely-spaced microstrip antennas, 20th Iranian Conferance on Electrical Engineering, (ICEE2012), Tehran, Iran, May 15-17, 2012, P. 1347-1351 (2012) [Google Scholar]
  21. O.M. Haraz, A.M. Elboushi, A.-R. Sebak, High-gain slotted oversize patch antenna with electromagnetic bandgap structure, 30th National radio science conference (NRSC 2013), April 16- 1868-73, (2013) [Google Scholar]
  22. K.P. Kumar, H. Khan, Effect of EBG structures on the field pattern of patch antennas, International journal of electromagnetics (IJEL), 1, 1, 13-19 (2016) [Google Scholar]
  23. A. Diallo, C. Luxey, P.L. Thuc, R. Staraj, G. Kossiavas, Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands, IEEE Transactions on antennas and propagation, 54, 11, 3063-3074 (2006) [CrossRef] [Google Scholar]
  24. A. Diallo, C. Luxey, P.L. Thuc, R. Staraj, G. Kossiavas, Enhanced two-antenna structures for universal mobile telecommunications system diversity terminals, IET Microw. Antennas Propag., 2, 1, 94-101 (2008) [CrossRef] [Google Scholar]
  25. M. Sharawi, A.Hassan, M. Khan, Correlation coefficient calculations for MIMO antenna systems: a comparative study, International Journal of Microwave and Wireless Technologies, 9, 10, 1991-2004 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.