Open Access
ITM Web Conf.
Volume 30, 2019
29th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2019)
Article Number 13005
Number of page(s) 7
Section Microwave Technology in Biology and Medicine (8a)
Published online 27 November 2019
  1. S.G. Vesnin et al., Research of a microwave radiometer for monitoring of internal temperature of biological tissues. Eastern-European Journal of Enterprise Technologies, v. 4, N. 5 (100). pp.6-15 (2019) [CrossRef] [Google Scholar]
  2. A.F. Bobrikhin, A.G. Gudkov, V.Yu. Leushin, V.F. Los, I.O. Porokhov, I.A. Sidorov, Modeling of the dipole, helical and cavity-slot antennas applicators for multichannel medical radiothermographs. CriMiCo 2014-24th International Crimean Conference Microwave and Telecommunication Technology, Sevastopol, 7-13 Sept. 2014, pp. 2014-1246 (2014) [Google Scholar]
  3. M.K. Sedankin, V.Yu. Leushin, A.G. Gudkov, S.G. Vesnin, I.A. Sidorov, S.V. Agasieva, L.M. Ovchinnikov, N.A Vetrova, Antenna applicators for medical microwave radiometers, Biomedical Engineering, v. 52, No. 4, pp. 235-238 (2018) [CrossRef] [Google Scholar]
  4. D.N. Chupina, M.K. Sedankin, S.G. Vesnin, Application of modern technologies of mathematical simulation for the development of medical equipment, 11th IEEE International Conference on Application of Information and Communication Technologies, AICT 2017 - Proceedings 11. С. 8687066 (2019) [Google Scholar]
  5. M.K. Sedankin et al., Development of patch textile antenna for medical robots, 2018 International Conference on Actual Problems of Electron Devices Engineering, APEDE 2018, pp. 413-420 (2018) [Google Scholar]
  6. M.K. Sedankin, V.Yu. Leushin, S.G. Vesnin, I.A. Sidorov, S.V. Agasieva, A.V. Markin, Mathematical simulation of heat transfer processes in a breast with a malignant tumor, Biomedical Engineering, v. 52. No.3. pp. 190-194 (2018) [CrossRef] [Google Scholar]
  7. S. Jacobsen, P. R. Stauffer, H.O. Rolfsnes, Characteristics of mircostrip muscle-loaded single-arm archimedean spiral antenna as investigated by FDTD numerical computations, IEEE Transaction on Biomedical Engineering, v. 52, No. 2. pp.321-33 (2005) [CrossRef] [Google Scholar]
  8. D.B. Rodrigues et al., Microwave radiometry for noninvasive monitoring of brain temperature, Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy, Springer, Cham, pp. 87-127 (2018) [CrossRef] [Google Scholar]
  9. P.R. Stauffer et al., Stable microwave radiometry system for long term monitoring of deep tissue temperature, Energy-based Treatment of Tissue and Assessment VII. – International Society for Optics and Photonics, v. 8584, С. 85840R, (2013) [Google Scholar]
  10. O. Klemetsen, S. Jacobsen, Improved radiometric performance attained by an elliptical microwave antenna with suction, IEEE Transactions on Biomedical Engineering, v. 59(1), pp.263-271 (2012) [CrossRef] [Google Scholar]
  11. P. Momenroodaki, Z. Popovic, R. Scheeler, A 1.4-GHz radiometer for internal body temperature measurements, European Microwave Conference (EuMC), IEEE, pp. 694-697 (2015) [Google Scholar]
  12. P. Мomenroodaki et al., Noninvasive internal body temperature tracking with near-field microwave radiometry, IEEE Transactions on Microwave Theory and Techniques, No 5, pp. 2535-2545 (2017) [Google Scholar]
  13. P.Y. Cresson et al., Temperature measurement by microwave radiometry, IEEE International Instrumentation and Measurement Technology Conference, Victoria (Vancouver Island, Canada), pp. 1344 – 1349 (2008) [Google Scholar]
  14. V.M. Ravi, K. Arunachalam, A low noise stable radiometer front-end for passive microwave tissue thermometry, Journal of Electromagnetic Waves and Applications, v. 35, No 6, pp. 743-758 (2019) [CrossRef] [Google Scholar]
  15. M.K. Sedankin et. al., Development of a miniature microwave radiothermograph for monitoring the internal brain temperature, Eastern-European Journal of Enterprise Technologies, v. 3(5), pp. 26-36 (2018) [CrossRef] [Google Scholar]
  16. L. Dubois et al., Contact-less sensors for temperature measurement by microwave radiometry in medical or industrial applications, Proceedings of ISAP, Niigata (Japan), pp.1262-1265 (2007) [Google Scholar]
  17. Clarisse Beaucamp-Ricard et al., Temperature measurement by microwave radiometry. IEEE transactions on instrumentation and measurement, v. 58, No 5, pp. 1712-1719 (2009) [CrossRef] [Google Scholar]
  18. M. R. Tofighi, Dual-mode planar applicator for simultaneous microwave heating and radiometric sensing, Electronics letters, v. 48, No 20, pp. 1252-1253 (2012) [CrossRef] [Google Scholar]
  19. Z. Рopovic, P. Momenroodaki, R. Scheeler, Toward wearable wireless thermometers for internal body temperature measurements, IEEE Communications Magazine, No 10, pp. 118-125 (2014) [Google Scholar]
  20. I. Valuev et al., Creating Numerically Efficient FDTD Simulations Using Generic C++ Programming, Lecture Notes in Computer Science (LNCS) 4707, 213 (2007) [CrossRef] [Google Scholar]
  21. S. Gabriel, R. W. Lau, C. Gabriel, The dielectric properties of biological tissues, II. Measurements in the frequency range 10 Hz to 20 GHz, .Physics in medicine & biology, v. 41, No 11, pp. 2251 (1996) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.