Open Access
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
Article Number 01012
Number of page(s) 5
Section Automation
Published online 29 July 2020
  1. Kertes PJ, Johnson TM, eds. (2007). Evidence Based Eye Care. Philadelphia, PA: Lippincott Williams and Wilkins. ISBN 978-0-7817-6964-8. [Google Scholar]
  2. Tapp RJ, Shaw JE, Harper CA, de Courten MP, Balkau B, McCarty DJ, Taylor HR, Welborn TA, Zim-met PZ (June 2003). “The prevalence of and factors associated with diabetic retinopathy in the Australian population”. Diabetes Care. 26 (6): 1731-1731. doi: 10.2337/diacare.26.6.1731 [Google Scholar]
  3. (2020). Diabetic Retinopa thy - Types, Symptoms, Causes and Compli cations | Everyday Health, [online] Available at: [Google Scholar]
  4. MedicineNet. (2020). Definition of Arteriosclerotic retinopathy, [online] Available at: [Google Scholar]
  5. Cold, F, Health, E., Disease, H., Disease, L., Management, P., Conditions, S., Problems, S., Disorders, S., Checker, S., Blogs, W, Boards, M., Answers, Q., Guide, I., Doctor, F, A-Z, C, A-Z, S., Medications, M., Identifier, P., Interactions, C, Drugs, C, Pregnant, T., Management, D., Obesity, W, Recipes, F., Exercise, E, Beauty, H., Balance, H, Relationships, S., Care, O., Health, W, Health, M., Well, A., Sleep, H., Teens, H., Pregnant, G., Trimester, F, Trimester, S., Trimester, T, Baby, N., Health, C, Vaccines, C, Kids, R., Cats, H., Dogs, H., Updates, C, Unbeatable, C, Back, I., Play Golf, L., Peak, E, Boards, M., Blogs, W and Center, N. (2020). Diabetic Retinopathy: Risks, Treatments, Prevention, [online] WebMD. Available at: [Google Scholar]
  6. Gulshan, V., Peng, L., Coram, M., Stumpe, M., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P., Mega, J. and Webster, D. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), p. 2402. [Google Scholar]
  7. Pratt, H., Coenen, E, Broadbent, D., Harding, S. and Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, pp.200-205. [Google Scholar]
  8. Triwijoyo, B., Budiharto, W and Abdurachman, E. (2017). The Classification of Hypertensive Retinopathy using Convolutional Neural Network. Procedia Computer Science, 116, pp.166-173. [Google Scholar]
  9. Wan, S., Liang, Y. and Zhang, Y. (2018). Deep convolutional neural networks for diabetic retinopathy detection by image classification. Computers and Electrical Engineering, 72, pp.274-282. [Google Scholar]
  10. Pires, R., Avila, S., Wainer, J., Valle, E., Abramoff, M. and Rocha, A. (2019). A data-driven approach to referable diabetic retinopathy detection. Artificial Intelligence in Medicine, 96, pp.93-106. [Google Scholar]
  11. Shanthi, T. and Sabeenian, R. (2019). Modified Alexnet architecture for classification of diabetic retinopathy images. Computers and Electrical Engineering, 76, pp.56-64. [Google Scholar]
  12. Porod, Wolfgang and Werblin, Frank and Chua, Leon and Roska, Tamas and Rodriguez-Vazquez, Angel and Roska, Botond and Fay, Patrick and Bernstein, Gary and Huang, Yih-Fang and Csurgay, Arpdd. (2004). Bio-Inspired Nano-Sensor-Enhanced CNN Visual Computer. Annals of the New York Academy of Sciences. 1013. 92-109. 10.1196/annals.l305.011. [Google Scholar]
  13. S. Srivastava, S. Prabhu, S. Ramesh, S. Pratapneni, A. Abraham and S.V. Bhandary, “Visualizing the Indicators of Diabetic Retinopathy Learnt by Convolutional Neural Networks,” 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, 2017, pp. 1-3. [Google Scholar]
  14. Wilkes, B. (2009). Central Mersey Diabetic Retinopathy Screening Programme, [online] pp.45-50. [Google Scholar]
  15. DocShop. (2020). Diabetic Retinopathy - Causes, Diagnosis, Symptoms, Risks, [online] Available at: [Google Scholar]
  16. DeMuro, J. (2020). What is a neural network?. [online] TechRadar. Available at: [Google Scholar]
  17. X. Wang, Y Lu, Y Wang and W. Chen, “Diabetic Retinopathy Stage Classification Using Convolutional Neural Networks,” 2018 IEEE International Conference on Information Reuse and Integration (IRI), Salt Lake City, UT, 2018, pp. 465-471. [Google Scholar]
  18. Kwasigroch, Arkadiusz, Bartlomiej larzembinski, and Michal Grochowski. “Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy.” 2018 International Interdisciplinary PhD Workshop (IIPhDW). IEEE, 2018 [Google Scholar]
  19. Sharma, H., Singh, A., Chandel, A., Singh, P. and Sapkal, P. (2019). Detection of Diabetic Retinopathy Using Convolutional Neural Network. SSRN Electronic lournal. [Google Scholar]
  20. Torrey, Lisa and Jude Shavlik. “Transfer Learning.” Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI Global, 2010. 242-264. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.